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Summary of updates and
corrections

In 2010 my master thesis [21] was submitted and graded. Since then, a number of works
have appeared [37, 12, 39, 2] for which this thesis has some relevance. For this reason I felt
that it would be good to implement various updates and corrections and to make the results
available in the present text. Following the summary you can find some additional comments
on availability of future updates, and software.

Summary

• All parameter dependence in the mathematical notation and the explanatory text of
Chapters 2, 3 and Chapter 4 (except for the last section) was removed. Everything is
done at criticality anyway, so there is no need for extra notation.

• §2.2 was split into a general part and two separate subsections discussing the cases of a
simple and a double eigenvalue, respectively.

• The old Lemma 2.4 is the new Lemma 2.5. The old lemma mixed two possible repre-
sentations of the adjoint eigenvector φ�. This was rectified: Here - and everywhere else
- we now consistently use the representations in Table 2.1.

• The old Lemma 2.5 is the new Lemma 2.4. It also applies to non-simple eigenvalues
and its new proof is almost trivial.

• Lemma 2.7 also mixed two possible representations of the adjoint eigenvector φ�1 and
generalized eigenvector φ�0 . This, too, was rectified. The proof now includes a derivation
of the formula for the duality pairing 〈φ�0 , φ1〉.

• Lemma 2.8 and Proposition 2.9 are new. The latter offers an explicit algorithm for
obtaining properly normalized generalized eigenvectors and adjoint eigenvectors corre-
sponding to a double eigenvalue of geometric multiplicity one, for use in the actual
computation of the Bogdanov-Takens critical normal form.

• Some simplifications were made in §3.2. In particular, the proof of Proposition 3.6 now
consistently uses the representations from Table 2.1 for the adjoint eigenfunction φ�

and the duality pairing between X�? and X�.

• §3.4.2 was simplified: Discussion of parameter-dependent normal forms is relegated to
the references and we use as much as possible the same symbols for the critical normal
form coefficients as in [25, Chapter 8], allowing for easy comparison.
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• In §3.3 and §3.5 the center manifold coefficients are now explicitly θ-dependent and the
shorthand for the bordered inverse is evaluated at θ, see (3.60) and (3.64) for examples.

• In §3.5.3 the expression for h31 was corrected by deleting −I from the last term.

• In §3.5.4 a missing θ was added inside the exponential in h020. In §3.5.5 missing θs were
added inside the exponentials in the quadratic and cubic center manifold coefficients
hjklm.

• The old §4.2.3 on the symbolic calculation of higher order derivatives was rewritten and
moved to §4.1. The new section no longer contains code listings, see the comments on
software below.

• The Van der Pol example in §4.2 now takes advantaged of the new §4.1. In (4.12), (4.13)
and (4.17) some signs were corrected. The expressions had been copied wrongly from
the output of a correct symbolic computation.

• Lots of minor editing. Various misspellings and otherwise innocent typos were corrected.

Editing is not finished. Perhaps most importantly, at this moment I am reviewing the final
numerical example in §4.3 to include the corrections in §3.5.4 and §3.5.5 that were mentioned
above. I hope and believe that the text is otherwise free of cardinal mathematical sins. Its
latest version will always be available online via

http://delayequations.net

together with supplementary material and links to works by others1. I intend to use this site
as a collection of study material and software, for delay equations in a broad sense.

Software

The Maple code - a major part of the old §4.2.3 - was moved out of the text, simplified by
eliminating excessive loop nesting in favor of more efficient functional constructs and put into
the separate DelayTools package - available via the above address and also briefly mentioned
in §4.2.3.

It is my belief that keeping the text and the code separated is - on average - to the benefit
of the reader, who will not be forced to understand the specifics of a particular software
environment. Indeed, some may prefer free computer algebra software such as SymPy [30] or
Maxima [28] or even just pen and paper.

Those who are mostly interested in the semi-automated numerical computation of critical
normal forms may like to have a look at the latest versions of the MATLAB package DDE-BIFTOOL
[14, 33]. In a recent cooperation [1] with M.M. Bosschaert (Hasselt, Belgium) and Yu. A.
Kuznetsov (Utrecht, The Netherlands) critical normalization and branch switching were im-
plemented in DDE-BIFTOOL. In turn, this cooperation has also led to some of the previously
listed corrections and improvements in the present text. For this I am grateful.

1I very much welcome cooperation based on technical knowledgeability and proper attribution at all times.

http://delayequations.net


Chapter 1

Introduction

Nobody realizes that some people expend tremendous energy merely to be normal.

Albert Camus (1913 - 1960)

Deterministic continuous-time models in the sciences often take the form of an ordinary
differential equation. When the system under scrutiny is assumed to be free of external
forcing, this equation will be autonomous and can be written as

ẋ(t) :=
dx

dt
(t) = f(x(t), α), (ODE)

with solutions x depending on time t and taking values in Rn. Here f : Rn × Rm → Rn is a
smooth vector field depending on an m-dimensional parameter α = (α1, . . . , αm).

A bifurcation analysis of (ODE) typically starts by locating its equilibria and then pro-
ceeds by analyzing how their number and stability depend on the value of a certain one-
dimensional control parameter, say α1 ∈ R1, the identification of which often requires good
modelling insight. At certain values of α1 bifurcations may occur. For example, equilibria may
collide in a fold-bifurcation or may spawn periodic solutions in a Hopf-bifurcation. These are
the canonical examples of local codimension-one bifurcations: Their occurrence depends on
the fulfillment of a one-dimensional condition, the ‘tuning’ of a one-dimensional parameter.

The character of a codimension one bifurcation may depend on a secondary parameter. An
investigation of this dependence requires a two-dimensional parameter space, (α1, α2) ∈ R2.
For instance, at α1 = α1,c an equilibrium may exhibit a Hopf bifurcation which, in turn,
changes from supercritical to subcritical at (α1, α2) = (α1,c, α2,c). This is an example of a
codimension-two bifurcation. (We will actually encounter this type of bifurcation in §4.3 in
Chapter 4.)

Software such as CONTENT [27] and its successor MATCONT [6] is currently used to great
advantage in the continuation of equilibria of ODE and their codimension-one bifurcations, as
well as in normal form analysis at codimension-one/two critical points. We refer to Chapter
10 of [25] for an introduction to numerical continuation techniques for equilibria of ODE,
to [23] for an up-to-date survey of numerical pathfollowing and its applications in various
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contexts, and to [25] for an introduction to applied finite-dimensional bifurcation analysis in
general.

ODE models assume an instantaneous effect of the dependent variable x on its rate of
change ẋ. Depending on the modelling context this assumption may not be justified. The
mathematical theory of structured biological populations has been one of the driving forces
behind a systematic functional-analytic investigation of equations of the form

ẋ(t) = F (xt, α), (1.1)

or
x(t) = F (xt, α), (1.2)

where F is a parameter-dependent map from some infinite-dimensional function space X to
Rn that depends on the history xt ∈ X at time t of the unknown x,

xt : [−h, 0]→ Rn, xt(θ) := x(t+ θ).

Here h > 0 is the delay parameter.
We make a few remarks to fix our terminology. In this text we will call (1.1) a delay

differential equation and use the abbreviation DDE. Its counterpart (1.2) is a purely
functional equation that does not involve any derivatives. We will call it a renewal equation,
also known as a Volterra functional equation. Both classes form a subset of the larger class of
delay equations. One also encounters mixed systems involving both (1.2) as well as (1.1).
It is natural to regard such systems as delay equations as well. It has recently been shown in
[7] that the functional analytic framework presented in [11] for the analysis of DDE is equally
well-suited for dealing with renewal equations and mixed systems. Indeed, on the abstract
semigroup level, the perturbation theory of dual semigroups (so-called sun-star calculus) truly
serves as a unifying device.

In this thesis we restrict our attention to ordinary DDE with finite delay parameter, i.e.

• we assume that 0 < h <∞,

• we work in X = C([−h, 0], Y ) with Y = Rn.

Relaxing the first restriction leads to non-compactness of the history interval [−h, 0] which
slightly complicates the spectral analysis of linear equations. Admission of more general
choices of the space Y enabled the treatment partial delay differential equations or structured
population models with an infinite number of feedback variables or states-at-birth. We men-
tion the paper [8] which discusses into some detail how the framework introduced in [11] and
[7] can be adapted to apply to these situations.

Also, the restriction to DDE deserves an explanation.

• Although DDE, renewal equations, and mixed systems are very similar on an abstract
semigroup level, we are interested in numerical algorithms and issues of implementa-
tion. We feel that this interest is served best by treating DDE and renewal equations
separately. In future work we plan to discuss normalization for the case of renewal
equations and mixed systems.

• In contemporary applied mathematics DDE seem to be more prominent than renewal
equations and mixed systems. The recent book [15] by Erneux provides an up-to-date
overview of the various application areas of time-invariant DDE. These range from
biological to optical and mechanical systems in which feedback plays an important role.
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• In line with this, software for the continuation of equilibria and periodic orbits of DDE is
nowadays publicly available. We mention the MATLAB package DDE-BIFTOOL developed
at the University of Leuven [14]. Also available is the C++ software Knut (formerly
PDDE-CONT) developed at the University of Bristol [34], [35], but this software is written
specifically for the continuation of periodic orbits. At the moment DDE-BITFOOL is not
capable of detecting local bifurcations and performing normal form analysis, not even
for codimension-one singularities. It is here that we hope the methods presented in this
manuscript may be of use.

This purpose of this thesis is to ‘lift’ the normalization method for local bifurcations of
ODE presented in [24] and reprinted in Chapter 8 of [25] to the infinite-dimensional setting
of DDE. We work out in detail how to compute the critical normal form coefficients for all
five generic codimension-two bifurcations of equilibria,

• cusp,

• generalized Hopf,

• Bogdanov-Takens,

• fold-Hopf,

• double Hopf,

and illustrate our results by means of examples. The formulas we derive are explicit and
rather compact. They depend only on first and higher-order (Fréchet-)derivatives of the
right-hand side of (1.1), as well as on eigenfunctions pertaining to the critical equilibrium.
As we will see, these eigenfunctions can always be represented as finite-dimensional objects
without requiring any intermediate discretization or truncation steps.

1.1 Structure of this thesis

Whenever we like to stress a particular phrase, we use italic. Definitions are printed in bold-
face. We have chosen to employ a ‘theorem-proof’ style of writing, but we have interspersed
the text with (hopefully illuminating) comments of a less formal nature.

Chapter 2 is both introductory as well as preparatory. We collect and (where neces-
sary) augment and adapt, in a fashion as concise and self-contained as reasonably possible,
those elements of the theory of DDE that are required to understand the lifting procedure of
the normalization technique mentioned in the introduction from the finite-dimensional ODE
setting to the infinite-dimensional setting of DDE. Key elements in this regard are:

• A computational spectral theory, by which we mean an explicit procedure to obtain the
eigenvalues and corresponding (generalized) eigenvectors associated with the lineariza-
tion around an equilibrium of a nonlinear DDE. The task of finding such a procedure is
more demanding than its ODE-analogue, but fortunately we shall require only a small
part of the characteristic matrix formalism involved.

• An invariant (center) manifold theory for non-hyperbolic equilibria.
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Chapters 3 and 4 form the core of the manuscript. In Chapter 3 we carry out the program
of deriving explicit expressions for the critical normal form coefficients of the five codimension-
two bifurcations mentioned in the introduction. At various points computational lemmas are
presented and proven. The structure of this Chapter is similar in purposes to [24].

In Chapter 4 we illustrate our results by means of two examples that together cover all
the bifurcations that were met in Chapter 3: A relatively simple, analytically tractable Van
der Pol oscillator equation and a more elaborate system appearing in neurodynamics. In
contrast to the first example, an analysis of the second example requires numerical aids. By
providing an analytically as well as a numerically spirited example we hope to convince the
reader that our expressions are equally well suited for paper-and-pencil computations and
computer implementation. Together with a brief example on the cusp bifurcation in §3.3 the
examples in Chapter 4 cover all five generically occurring local codimension-two bifurcations
in DDE.

Finally, in Chapter 5 we briefly look ahead.

1.2 Existing literature

Two standard references for the theory of DDE are found most prominently in the literature.
There is the book of Hale and Verduyn Lunel [19] (a revised edition of the 1977 original by
Hale) and the book by Diekmann, Van Gils, Verduyn Lunel and Walther [11].

Whenever one wants to set up a dynamical theory for DDE, one inevitably encounters
the functional analytic difficulty that the ‘natural’ phase space C([−h, 0],Rn) of continuous
functions is too ‘small’ for a successful linear or nonlinear (perturbation) theory. This is an
important theoretical issue to which we devote §2.1 in Chapter 2. There are two ways to
address the problem: In [19] it is essentially ignored by taking a ‘formal adjoint’ approach.
This ‘solution’ lacks mathematical rigor and therefore it does not form a good basis for
a method of normal form computation that we would like to extend (at a later stage) to
renewal equations and mixed systems.

It is primarily for this reason that we have chosen to adopt [11] as our main reference for
the theory of DDE. In this work the ‘state space problem’ is tackled using sun-star calculus.
As we noted above, this approach leads to a framework that is well suited for the analysis
of renewal equations and mixed systems. Furthermore, expressions for critical normal form
coefficients have an appearance that is strikingly similar to their finite-dimensional analogues.

A formula for the direction of bifurcation (the first Lyapunov coefficient) for Hopf sin-
gularities in the sun-star context was first derived and applied to DDE by Van Gils, see
Chapter X of [11] and the literature comments in §X.4. We will encounter this formula again
in §3.5.3 as a ‘by-product’ of our treatment of the generalized Hopf bifurcation. Although
§IX.10 of [11] contains an example of a DDE exhibiting a Bogdanov-Takens bifurcation, the
corresponding normal form calculation is performed by first computing the center manifold
and then analyzing the restricted system. This traditional two-stage approach is computa-
tionally involved and essentially obsolete. We do not know of other examples of systematic
analysis of codimension-two points of DDE using the sun-star method.

For an introduction to the work of Faria and Magelhães on normal forms for DDE from
the mid-1990s we refer to the review article [16] and the references therein. The work of these
authors is based on the formal adjoint approach taken in [19]. Its purpose is to provide a
method for the calculation of normal form coefficients (possibly depending on parameters)
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that avoids preliminary computation of the center manifold by employing a normalization
that also linearizes the center manifold. This goal is shared by the approach proposed in the
present manuscript. However, we find our method to be preferable for three reasons.

• From a theoretical viewpoint, the method in this manuscript is based on sun-star cal-
culus. In contrast to an approach based on formal adjoint theory, it is therefore entirely
rigorous and is expected to extend to renewal equations and mixed systems with rela-
tively little effort.

• It leads to explicit and ready-to-implement expressions for the critical normal form
coefficients. These are compact, easy to evaluate and valid under weaker conditions
than those imposed in the work of Faria and Magelhães. (For instance, in order to
evaluate the formulas presented in this manuscript for a particular DDE, there is no
need to solve functional equations or boundary value problems.) The example in §4.2
illustrates this point by comparing results using our method to results from the literature
[22] that were derived by means of the Faria - Magelhães approach.

• It has been completely implemented, in the sense that formulas for the critical normal
forms of all five codimension-two bifurcations of equilibria are available. (We do not limit
ourselves to a discussion of the Hopf and Bogdanov-Takens bifurcations.) Moreover, as
will be illustrated in §4.3, these formulas are also readily evaluated when only numerical
(as opposed to symbolic) data is available.

The basic idea of the normalization approach used in this thesis goes back to the work of Coul-
let and Spiegel [3]. The introduction to Chapter 3 contains more references to applications
of the method to ODEs and maps.

1.3 Retrospective and acknowledgements

The process of writing this thesis bore, at times, close similarities to some sort of quest. In
fact, not so much the writing itself but rather the complications arising from a variety of
factors introduced an unnecessarily large and regrettable delay [sic] in its completion.

The first version of the thesis was ready by September 2007 as the result of a coordinated
effort between the Mathematical Institute of the University of Utrecht and the Department
of Theoretical Physics of the Free University of Amsterdam. Unfortunately, what the math-
ematician may appreciate as useful formalism is sometimes mistaken by a physicist for un-
necessary abstraction. By its very nature, normal form computation is a subtle matter that
requires a bit of theoretical preparation, particularly when one deals with infinite-dimensional
systems such as delay equations.

Ultimately, it was decided that the thesis would be completed independently of the De-
partment of Theoretical Physics in Amsterdam. This warranted a rather thorough rewriting
of parts of the material as well as the introduction of the second example in Chapter 4 that
took the space of a foreseen but never completed example from laser physics.

However, it would be unjust to blame the classical mathematics - physics tension for the
entire time gap from the Autumn of 2007 to the Autumn of 2010. In the years in between I
have been plagued by problems of the mind that sometimes made it hard to work. This fact,
combined with the start of my PhD track in Autumn 2007 that brought other tasks to the
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forefront, did not promote a swift completion of this manuscript. The quote at the top of the
present chapter should be read in this light.

It is therefore a pleasure to report that, despite the above difficulties, every time I resumed
the work on this thesis, I did so with pleasure. In particular, it was very stimulating to write
§4.3, seeing the methods of Chapter 3 come to life. I would like to thank Stephan van Gils,
Hil Meijer and Sid Visser from the Department of Mathematics of the University of Twente
for suggesting their neural mass model [38] as a test case. I appreciate the opportunity I had
in April 2010 to meet and speak with Dirk Roose from the Department of Computer Science
of the University of Leuven during his visit to Utrecht. Furthermore, thanks are due to Odo
Diekmann for a careful reading of Chapter 2 and the first paragraph of Chapter 3. I am
grateful to him and Stephan van Gils for giving me the time to come to peace with myself
and calmly finish incomplete work. My thesis adviser Yuri Kuznetsov is to be thanked for his
lasting patience and his stimulating work [25] without which this manuscript would not have
been written.

On a personal level, I am much indebted to my parents, Simone and Jos, and my girlfriend
Alina for their love and support. I would not be without the three of you.

Zeist, September 2007 - September 2010



Chapter 2

Stationary states of delay
differential equations

This chapter introduces the theory of delay differential equations in so far as needed to
understand the material in the subsequent chapter. Proofs that can be found in the literature
are omitted. Instead, we provide detailed references.

For h > 0 let C([−h, 0],Rn) be the Banach-space of continuous functions φ : [−h, 0]→ Rn,
endowed with the supremum-norm

‖φ‖ := sup{|φ(x)| : −h ≤ x ≤ 0}.

By C([−h, 0],Rn)∗ we shall denote its dual space. A representation theorem by F. Riesz
enables us to identify this dual space with the Banach space NBV([0, h],Rn) of functions
η : [0, h]→ Rn of bounded variation on [0, h], normalized by requiring that η(0) = 0 and η be
continuous from the right on the open interval (0, h).

Let F : C([−h, 0],Rn) → Rn be of class Ck, where k ≥ 1 is assumed to be as large as
necessary. We consider the DDE

ẋ(t) = F (xt), t ≥ 0, (DDE)

with initial condition φ ∈ C([−h, 0],Rn) specified as

x0 = φ. (IC)

Recall from the introduction that for every fixed t ≥ 0 the history function xt : [−h, 0]→ Rn
is defined by

xt(θ) := x(t+ θ), −h ≤ θ ≤ 0.

By a solution of (DDE) with initial condition (IC) we shall mean a function x(·, φ) :
[−h, t+) → Rn which satisfies (IC), is differentiable on (0, t+) and satisfies (DDE) there.
In this paper we shall always assume that solutions are in fact global, in the sense that we
can take t+ = ∞. For linear equations this holds generally, while for nonlinear equations it
requires ad-hoc verification by deriving a-priori bounds on the solutions, just as in the case
of ordinary differential equations, but often this step is omitted in applications.

In the case that F is linear in the state variable, (DDE) may be written as

ẋ(t) =

∫ h

0
dη(θ)xt(−θ), t ≥ 0, (2.1)

7
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where η ∈ NBV([0, h],Rn) is uniquely and explicitly determined by F and the integral is a
Riemann-Stieltjes integral, see Chapter I.1 of [11].

In this chapter we are interested in collecting a number of tools and results vital to an
analysis of (DDE) near a constant solution.

In §2.1 we show how (2.1) and its nonlinear perturbations generate a semiflow in the
function space C([−h, 0],Rn). Although we will not get into technical questions of existence
and uniqueness (these have been taken care of in [11]), in this paper we shall need parts of
the formalism involved.

In §2.2 we explain how the asymptotics of the linearization near a hyperbolic equilibrium
of the nonlinear semiflow corresponding to (DDE) may be analyzed by means of the so-called
characteristic matrix.

In §2.3 we discuss non-hyperbolicity. When one or more eigenvalues of an equilibrium of
(DDE) lie on the imaginary axis, the equilibrium becomes non-hyperbolic and it may undergo
local bifurcations. Near a non-hyperbolic equilibrium the semiflow dynamics are essentially
finite-dimensional by virtue of the existence of a smooth center manifold. On this invariant
manifold the semiflow enjoys particularly good differentiability properties that facilitate our
approach to normal form calculations in Chapter 3.

2.1 Semiflows generated by delay differential equations

As it turns out, the space C([−h, 0],Rn) by itself is not readily suitable for a semigroup
approach to (DDE) as the function η encoding the particulars of the linear equation (2.1)
appears explicitly in the domain of the generator of the semigroup one would like to study.
This complicates the development of a perturbation theory for dealing with nonlinear prob-
lems. (See the remarks on the problem on p. 39 of [11] and in the introductory section of
[7].)

One way to resolve this difficulty is to make use of a general functional analytic perturba-
tion framework known as sun-star calculus or dual perturbation theory. This approach allows
us to treat DDE as bounded (in fact: finite rank) perturbations with values in a ’bigger’
space, the so-called sun-star dual X�? of the original state space X. As we will explain be-
low, these perturbations enter additively in the action of a certain weak∗-generator A�? on
X�?, leaving its domain untouched. The price one has to pay for thus enlarging one’s state
space vocabulary is a loss of strong continuity of the corresponding sun-star semigroup T�?,
which we can however recover by taking a suitable restriction. We will now present the basic
ideas and results in an abstract setting. For proofs of all the statements in this section we
refer to Chapters II, III and VII and Appendix II.3 of [11]. For linear semigroup theory in
general we refer to [13].

Let X be a Banach space, let L(X) be the space of bounded linear operators on X
and let T be a strongly continuous (C0) one-parameter semigroup on X with generator A
having domain D(A). If X is non-reflexive, for instance when X = C([−h, 0],Rn), the adjoint
semigroup T ∗ is in general only weak∗-continuous on X∗ and (A∗, D(A∗)) generates T ∗ merely
in the weak∗-sense. However, the set

X� := {x∗ ∈ X∗ : t 7→ T ∗(t)x∗ is norm-continuous }

is a norm-closed T ∗(t)-invariant subspace of X∗. In fact, one can prove that

X� = ¯D(A∗), (2.2)
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where the closure in the right-hand side is with respect to the norm of X∗. By construction
the restriction T� of T ∗ to X� is strongly continuous. Moreover, one may prove that this
restriction is exactly generated by the part of A∗ in X� which we denote by A�, i.e.

D(A�) := {x� ∈ D(A∗) : A∗x� ∈ X�}, A�x� := A∗x�.

At this stage we have a C0 semigroup T� on a Banach space X� which is norm-generated
by (A�, D(A�)). Therefore, we may play the same game once more. We obtain an adjoint
semigroup T�? on the dual space X�? with weak∗-generator (A�?, D(A�?)). The set

X�� := {x�? ∈ X�? : t 7→ T�?(t)x�? is norm-continuous }

is a norm-closed T�?(t)-invariant subspace of X�?. One can prove that

X�� = ¯D(A�?), (2.3)

where the closure is with respect to the norm in X�?. The restricted semigroup T�� is by
construction strongly continuous and its generator is given by the part A�� of A�? in X��,
i.e.

D(A��) := {x�� ∈ D(A�?) : A�?x�� ∈ X��}, A��x�� := A�?x��.

In this paper we will be concerned with the situation in which the spaces X and X�� can be
identified with each other via the canonical embedding j : X → X�? given by

〈j(x), x�〉 := 〈x�, x〉, ∀x ∈ X,∀x� ∈ X�. (2.4)

When such an identification is possible (i.e. when j is onto X��) we shall say that X is
sun-reflexive with respect to the semigroup T .

Remark 2.1. In this paper we will omit the embedding j in our notation. For example,
we shall write X ⊂ X�? instead of X�� ⊂ X�? and X = j−1(X��). The advantage of
this choice is that our bifurcation formulas in Chapter 3 will look much cleaner, but the
disadvantage is that the reader has to do his own bookkeeping-of-spaces. ♦

One can show that there exists a unique C0 semigroup T on X = C([−h, 0],Rn) which is in
one-to-one correspondence with the solutions of (2.1). Let us assume that x(·, φ) : [−h,∞)→
Rn is a solution of (2.1) with initial value x0 = φ ∈ C([−h, 0],Rn), then

T (t)φ = xt(·, φ), t ≥ 0. (2.5)

Conversely, for any initial value φ ∈ C([−h, 0],Rn) the function x(·, φ) : [−h,∞)→ Rn defined
by

x0 := φ, x(t, φ) := (T (t)φ)(0), ∀ t ≥ 0, (2.6)

is the unique solution of (DDE) with initial condition φ. The sun-star construction outlined
above behaves particularly well with respect to perturbations in B(X,X�?) of the weak∗-
generator A�? of the adjoint semigroup T�? on the ‘big’ space X�?. Indeed, the domains
D(A∗) and D(A�?) are the same for all linear equations (i.e. for all choices of η in (2.1))
and by (2.2) and (2.3) the same then holds for the spaces X� and X��. In particular,
C([−h, 0],Rn) is sun-reflexive with respect to every linear DDE. In Table 2.1 we list explicit
representations for the spaces X,X∗, X� and X�? as well as the dual pairings between them,
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space representation pairing

X φ ∈ C([−h, 0],Rn)
〈f, φ〉 =

∫ h
0 df(θ)φ(−θ)

X∗ f ∈ NBV([0, h],Rn)

X� (c, g) ∈ Rn × L1([0, h],Rn)
〈(α, φ), (c, g)〉 = cα+

∫ h
0 g(θ)φ(−θ) dθ

X�? (α, φ) ∈ Rn × L∞([−h, 0],Rn)

X φ ∈ C([−h, 0],Rn)
〈(c, g), φ〉 = cφ(0) +

∫ h
0 g(θ)φ(−θ) dθ

X� (c, g) ∈ Rn × L1([0, h],Rn)

Table 2.1: Representations for the abstract spaces X,X∗, X� and X�? for the case of the
semigroup T associated with the linear equation (2.1). The space Rn is just Rn, but in Chapter 3
it shall turn out to be convenient to regard its elements as row vectors instead of column vectors.
Also indicated are the dual pairings that we will encounter in this manuscript.

for the case that X = C([−h, 0],Rn) and T is the semigroup associated with (2.1). We will
frequently use these pairings in Chapter 3.

For the remainder of this chapter, let the spaces X,X� etc. be as in Table 2.1. Using
results from sun-star calculus one can also deal efficiently with perturbations of (2.1) of the
form

ẋ(t) =

∫ h

0
dη(θ)xt(−θ) +G(xt), t ≥ 0. (2.7)

Such perturbations arise when studying stability of equilibria of (DDE) as in the next section.
Here G : X → Rn is assumed to be of class Ck for sufficiently high k and is supposed to satisfy

G(0) = 0, DG(0) = 0. (2.8)

Furthermore, for j = 1, . . . , n let us denote by ej the standard basis vectors of Rn. Introduce
the vectors r�?j ∈ X�? by putting

r�?j := (ej , 0), j = 1, . . . , n.

Using this notation let us define a Ck-smooth mapping R : X → X�? by

R(φ) :=

n∑
j=1

Gj(φ)r�?j . (2.9)

(Note that the finite-dimensional range of R is contained in the linear span of the Rn-
component of X�?. This is a special feature of DDE and renewal equations.) Finally, also
note that it follows from our assumptions (2.8) on G that

R(0) = 0, DR(0) = 0. (2.10)

The kernel η ∈ NBV([0, h],Rn) defines a linear DDE. Let T be the corresponding semigroup
of solution operators. Now consider the nonlinear abstract integral equation

u(t) = T (t)φ+

∫ t

0
T�?(t− τ)R(u(τ)) dτ, (AIE)

where φ ∈ X is given and the integral must be interpreted as a weak∗-integral (with values
in X), see Lemma III.2.1 and Interlude 3.13 of Appendix II in [11]. Solutions of (AIE) are
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by definition continuous functions u : [0, t+)→ X. We recall our running assumption that it
is always possible to take t+ =∞. Analogous to the purely linear case, it can be shown that
these solutions constitute a strongly continuous nonlinear semiflow on X (see Chapter VII of
[11]) and that there is a one-to-one correspondence between solutions of (2.7) and solutions
of (AIE). Namely, if x(·, φ) : [−h,∞)→ Rn solves (2.7) with initial condition x0 = φ, then

u(t, φ) = xt(·, φ), t ≥ 0, (2.11)

uniquely solves (AIE). Conversely, if u(·, φ) is a solution of (AIE) then the function x(·, φ) :
[−h,∞)→ Rn defined by

x0 := φ, x(t, φ) := u(t, φ)(0), ∀ t ≥ 0, (2.12)

uniquely solves (2.7) with initial condition φ.

2.2 Linearization and analysis near an equilibrium

Let φ̂ ∈ X be a constant function. Suppose that x̄ : [−h,∞)→ Rn satisfying

x̂t = φ̂, ∀ t ≥ 0,

is a stationary solution of (DDE), i.e. F (φ̂) = 0. By a change of coordinates it can always be
arranged that φ̂ = 0. We can then write (DDE) in the form (2.7) satisfying conditions (2.8).
Namely,

ẋ(t) = DF (0)xt + (F (xt)−DF (0)xt)

=

∫ h

0
dη(θ)xt(−θ) + (F (xt)−DF (0)xt),

(2.13)

where DF (0) ∈ L(X,Rn) denotes the Fréchet derivative of F , evaluated at the point 0 ∈ X
and η denotes its NBV([0, h],Rn) representation,

DF (φ̂)φ =

∫ h

0
dη(θ)φ(−θ), ∀φ ∈ X. (2.14)

Here the integral to the right is again a Riemann-Stieltjes integral. The nonlinearity R from
(2.9) becomes

R(φ) =
n∑
j=1

(F (φ)−DF (0)φ)jr
�?
j . (2.15)

We would like to have an instrument to decide about stability of the origin as an equilibrium
of the nonlinear semiflow associated with (2.13). Recall from the previous section that this
semiflow corresponds to the solution of (AIE) with T the strongly continuous solution of the
linear DDE defined by η. Let A be the generator of the semigroup T . If its spectrum σ(A)
does not contain any purely imaginary points, then the question of stability of the equilibrium
is answered by the location of σ(A) in the complex plane. This is formalized in the Principle
of Linearized Stability for DDE, see Theorem VII.6.8 of [11].

Remark 2.2. As soon as spectral theory is applied to the analysis of a real-valued problem,
one should complexify all spaces involved, as well as the operators acting on them. For the
sun-star framework introduced in the previous section this is not a trivial task. It has however
been carried out in detail in [11, §III.7] and that is why until §3.4 we refrain from discussing
this issue. We do not expect this omission to cause the reader major difficulties. ♦
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In order to find σ(A) it is not necessary to work with the generator A directly. Indeed,
there exists a holomorphic matrix-valued function, called the characteristic matrix, from
which all spectral information can be obtained. The following theorem summarizes what we
will need. The proofs of the statements given can be found in Chapter IV of [11]. One can
exploit the fact that, although A itself is unbounded, for finite delays h > 0 its resolvent
(zI −A)−1 is a compact operator on X, for which the non-zero spectrum consists of isolated
eigenvalues only. For an introduction to the spectral theory of closed linear operators see
Chapter V of [36] and Chapter IV.1 of [13].

A point λ ∈ σ(A) is called an eigenvalue of finite type if it is an isolated point of σ(A)
and its algebraic multiplicity is finite, see the definitions on p. 96 of [11].

Theorem 2.3. Let A be the generator of the semigroup T corresponding to the linear part of
(2.13).

i σ(A) = σ(A∗) = σ(A�) = σ(A�?). These spectra consist solely of eigenvalues of finite
type.

ii The matrix-valued function ∆ : C→ Cn×n defined by

∆(z) := zI −
∫ h

0
e−zθdη(θ) (2.16)

is holomorphic, and λ ∈ σ(A) if and only if det ∆(λ) = 0. In that case the order of λ as
a root of det ∆ equals the algebraic multiplicity of λ as an eigenvalue and the dimension
of the nullspace N [∆(λ)] is equal to the geometric multiplicity of λ as an eigenvalue.
Finally, the (generalized) eigenspaces corresponding to λ are given by the nullspaces

N [(λI −A)kλ ] = N [(λI −A�?)kλ ] and N [(λI −A∗)kλ ] = N [(λI −A�)kλ ],

where kλ is the order of λ as a pole of z 7→ ∆(z)−1.

The transcendental equation det ∆(z) = 0 is known as the characteristic equation. In
all but the simplest cases, finding eigenvalues by locating its roots requires numerical analysis.

When bifurcations involve different eigenvalues (such is the case for e.g. the fold-Hopf
and the double Hopf bifurcation), we are required to calculate pairings of the sort (2.18) with
φ� and φ pertaining to different eigenvalues. The following lemma shows that such pairings
always vanish.

Lemma 2.4. Let λ and µ be eigenvalues of A, with λ 6= µ. Let φλ be an eigenvector of A
corresponding to λ and let φ�µ be an eigenvector of A∗ corresponding to µ. Then 〈φ�µ , φλ〉 = 0.

Proof. Since λ 6= µ we may assume that either λ 6= 0 or µ 6= 0. In the first case φλ = 1
λAφλ

so

〈φ�µ , φλ〉 =
1

λ
〈φ�µ , Aφλ〉 =

1

λ
〈A∗φ�µ , φλ〉 =

µ

λ
〈φ�µ , φλ〉,

and therefore 〈φ�µ , φλ〉 = 0. The case µ 6= 0 is identical.

In addition to knowledge about the eigenvalues we will also require the corresponding
eigenvectors. These, too, can be obtained from the characteristic matrix. We do not need a
systematic result, but merely treat the special cases when λ ∈ σ(A) is simple (i.e. of algebraic
multiplicity one, for cusp, generalized Hopf, fold-Hopf and double Hopf points) or when λ is
a double eigenvalue (for Bogdanov-Takens points). We remark that Theorem 2.3 provides a
simple criterion for calculating algebraic and geometric multiplicities of a given eigenvalue.
Therefore, it is easy to check which one of the next two subsections applies in a concrete case.
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2.2.1 The case of a simple eigenvalue

Please note carefully that for φ� presented below we have used the representation of X�

given in Table 2.1.

Lemma 2.5. Let λ be a simple eigenvalue of A. If the non-zero column vector q is a right
null vector of ∆(λ) (i.e. ∆(λ)q = 0) then

φ = (θ 7→ eλθq) (2.17)

is an eigenvector of A corresponding to λ. Furthermore, if the non-zero row vector p is a left
null vector of ∆(λ) (i.e. p∆(λ) = 0) then

φ� =

(
p, θ 7→ p

∫ h

θ
eλ(θ−s) dη(s)

)
is an eigenvector of A∗ corresponding to λ. Finally,

〈φ�, φ〉 = p∆′(λ)q 6= 0, (2.18)

where ∆′(λ) denotes the derivative of z 7→ ∆(z) at z = λ.

Proof. The statements are identical to or follow directly from Theorems IV.5.5 and IV.5.9
(eigenvector for A and A∗, respectively) and Corollary 5.12 (the identity (2.18) for their
pairing) in [11].

The expression (2.18) will be used frequently in Chapter 3 to achieve a mutual normal-
ization of (adjoint) eigenvectors. Note that for φ� ∈ X� we employed the representation for
elements in X� given in Table 2.1.

2.2.2 The case of a double eigenvalue

Next, we turn to the case of a double eigenvalue. Of course we have in mind an application
to the Bogdanov-Takens bifurcation treated in §3.5.2, but some of the definitions and results
below are relevant in a more general setting.

Definition 2.6. A sequence of column vectors q0, q1, . . . , qk−1 in Rn is called a right Jordan
chain for ∆ at λ if q0 6= 0 and

∆(z)(q0 + (z − λ)q1 + . . .+ (z − λ)k−1qk−1) = O((z − λ)k) as z → λ.

The number k is called the rank of the chain. Similarly, a sequence of row vectors p0, . . . , pk−1

in Rn is called a left Jordan chain for ∆ at λ if p0 6= 0 and

(pk−1 + (z − λ)pk−2 + . . .+ (z − λ)k−1p0)∆(z) = O((z − λ)k) as z → λ.

Although the above definition is quite usable for hand calculations, we remark that Ex-
ercise IV.5.11 in [11] presents a way to calculate Jordan chains from the zero-eigenvectors of
a matrix whose entries involve derivatives of ∆(z) at z = λ. This method may be preferable
for computer implementations.
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Suppose that λ is a double eigenvalue of A of geometric multiplicity one. It is straight-
forward to verify that there exists an eigenvector φ0 ∈ D(A) and a generalized eigenvector
φ1 ∈ D(A) such that

Aφ0 = λφ0, Aφ1 = λφ1 + φ0.

Also, there exists an eigenvector φ�1 ∈ D(A∗) and a generalized eigenvector φ�0 ∈ D(A∗) such
that

A∗φ�1 = λφ�1 , A∗φ�0 = λφ�0 + φ�1 .

As for Lemma 2.5 we note that in the expressions for φ�1,0 below we have used the represen-
tation of X� given in Table 2.1.

Lemma 2.7. Let λ be an eigenvalue of A with geometric multiplicity one and algebraic
multiplicity two. Let {q0, q1} ∈ Rn and {p1, p0} ∈ Rn be rank-two right and left Jordan chains
of ∆ at λ. Then

φ0 = (θ 7→ eλθq0) and φ1 = (θ 7→ eλθ(θq0 + q1))

are an eigenvector and a generalized eigenvector for A corresponding to λ and

φ�1 =

(
p1, θ 7→ p1

∫ h

θ
eλ(θ−s) dη(s)

)
,

φ�0 =

(
p0, θ 7→ p0

∫ h

θ
eλ(θ−s) dη(s) + p1

∫ h

θ
eλ(θ−s)(θ − s) dη(s)

)
,

are an eigenvector and a generalized eigenvector for A∗ corresponding to λ. Moreover, the
following identities hold:

〈φ�0 , φ0〉 = p0∆′(λ)q0 +
1

2!
p1∆′′(λ)q0, (2.19a)

〈φ�1 , φ1〉 = p1∆′(λ)q1 +
1

2!
p1∆′′(λ)q0, (2.19b)

〈φ�1 , φ0〉 = p1∆′(λ)q0, (2.19c)

〈φ�0 , φ1〉 = p0∆′(λ)q1 +
1

2!
p0∆′′(λ)q0 +

1

2!
p1∆′′(λ)q1 +

1

3!
p1∆′′′(λ)q0. (2.19d)

Here ∆′(λ),∆′′(λ) and ∆′′′(λ) are derivatives of orders one to three of ∆(z) at z = λ.

Proof. The formulas for the (generalized) eigenvectors can be found from Theorems IV.5.5
and IV.5.9 in [11]. The expressions for the pairings in (2.19) are new, except for (2.19c) which
is just the same as (2.18). As an example, let us prove (2.19d). From (2.16) we infer that

∆′(λ) = I +

∫ h

0
se−λs dη(s),

∆′′(λ) = −
∫ h

0
s2e−λs dη(s),

∆′′′(λ) =

∫ h

0
s3e−λs dη(s).
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Using the pairing between X� and X in the lower right cell of Table 2.1, we compute

〈φ�0 , φ1〉 = p0q1 +

∫ h

0
p0

∫ h

θ
eλ(θ−s) dη(s)(−θ)e−λθq0 dθ

+

∫ h

0
p0

∫ h

θ
eλ(θ−s) dη(s)e−λθq1 dθ

+

∫ h

0
p1

∫ h

θ
eλ(θ−s)(θ − s) dη(s)(−θ)e−λθq0 dθ

+

∫ h

0
p1

∫ h

θ
eλ(θ−s)(θ − s) dη(s)e−λθq1 dθ

= p0q1 + I1 + I2 + I3 + I4,

(2.20)

where the Ii correspond to the four appearing double integrals, in that order. We deal with
each of them separately, but the computations are very similar. To start, we find using
Fubini’s theorem,

I1 = p0

∫ h

0

∫ h

θ
(−θ)e−λs dη(s) dθq0 = p0

∫ h

0

∫ s

0
(−θ)e−λs dθ dη(s)q0

= p0

∫ h

0

∫ s

0
(−θ) dθe−λs dη(s)q0 = −1

2
p0

∫ h

0
s2e−λs dη(s)q0 =

1

2
p0∆′′(λ)q0.

For I2 we obtain

I2 = p0

∫ h

0

∫ h

θ
e−λs dη(s) dθq1 = p0

∫ h

0

∫ s

0
e−λs dθ dη(s)q1

= p0

∫ h

0

∫ s

0
dθe−λs dη(s)q1 = p0

∫ h

0
se−λs dη(s)q1 = p0∆′(λ)q1 − p0q1,

and for I3 we get

I3 = p1

∫ h

0

∫ h

θ
e−λs(θ − s)(−θ) dη(s) dθq0 = p1

∫ h

0

∫ s

0
e−λs(θ − s)(−θ) dθ dη(s)q0

= p1

∫ h

0

∫ s

0
(θ − s)(−θ) dθe−λs dη(s)q0 =

1

6
p1

∫ h

0
s3e−λs dη(s)q0 =

1

6
p1∆′′′(λ)q0,

and, at last,

I4 = p1

∫ h

0

∫ h

θ
e−λs(θ − s) dη(s) dθq1 = p1

∫ h

0

∫ s

0
e−λs(θ − s) dθ dη(s)q1

= p1

∫ h

0

∫ s

0
(θ − s) dθe−λs dη(s)q1 = −1

2
p1

∫ h

0
s2e−λs dη(s)q1 =

1

2
p1∆′′(λ)q1.

Substituting these results into (2.20) then yields (2.19d).

By induction one verifies that identities such as those in (2.19) hold more generally, i.e.
pairings may be expressed as appropriately truncated series involving derivatives of z 7→ ∆(z)
as well as right and left Jordan chains for ∆ at λ. Since we do not have any need for such
results in this paper, we refrain from stating them explicitly.
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In order to calculate the critical normal form for the Bogdanov-Takens bifurcation, it is
important that we are able to mutually normalize the (generalized) eigenvectors appearing
in Lemma 2.7. First we give a general result, also see [26, App. A] for the finite dimensional
case, which is formally identical. As a consequence of this result and Lemma 2.7, we then
obtain an algorithm to effectuate the required normalization.

Lemma 2.8. Let L : D(L) ⊆ E → E be a closed, densely defined linear operator on a complex
Banach space E. Let λ ∈ C be a pole of the resolvent map of geometric (algebraic) multiplicity
one (two) and suppose that φ0,1 and φ∗1,0 are corresponding (generalized) eigenvectors of L
and L∗,

Lφ0 = λφ0, Lφ1 = λφ1 + φ0, L∗φ∗1 = λφ∗1, L∗φ∗0 = λφ∗0 + φ∗1.

Then it holds that

〈φ∗0, φ0〉 = 〈φ∗1, φ1〉 6= 0. (2.21)

Moreover, the vectors

ψ0 :=
1

〈φ∗0, φ0〉
φ0, ψ1 :=

1

〈φ∗1, φ1〉
φ1,

are an eigenvector and a generalized eigenvector of L corresponding to λ, while the vectors

ψ∗1 := φ∗1, ψ∗0 := φ∗0 −
〈φ∗0, φ1〉
〈φ∗1, φ1〉

φ∗1,

are an eigenvector and a generalized eigenvector of L∗ corresponding to λ. These vectors
satisfy the ‘biorthogonality’ condition1

〈ψ∗i , ψj〉 = δij , i, j = 0, 1. (2.22)

Proof. According to [36, §V.10] we may decompose E as

E = N [(λ− L)2]⊕N [(λ− L∗)2]
⊥
.

We start by noting that

〈φ∗1, φ0〉 = 〈φ∗1, Lφ1 − λφ1〉 = λ〈φ∗1, φ1〉 − λ〈φ∗1, φ1〉 = 0. (2.23)

Next, we observe that φ0 6∈ N [(λ− L∗)2]
⊥

. By (2.23) and the fact that N [(λ − L∗)2] is
spanned by φ∗0 and φ∗1 this implies that 〈φ∗0, φ0〉 6= 0. Furthermore,

〈φ∗1, φ1〉 = 〈L∗φ∗0 − λφ∗0, φ1〉 = 〈φ∗0, Lφ1〉 − λ〈φ∗0, φ1〉 = 〈φ∗0, λφ1 + φ0〉 − λ〈φ∗0, φ1〉 = 〈φ∗0, φ0〉,

which proves (2.21).

It is easy to check that, for any non-zero κ ∈ C, the vectors κφ0 and κφ1 are an eigenvector
and a generalized eigenvector of L corresponding to λ. Also, since φ∗1 and φ∗0 are linearly
independent, follows that for any δ ∈ C the vectors φ∗1 and φ∗0 + δφ∗1 are an eigenvector and
a generalized eigenvector of L∗ corresponding to λ.

1Here and in the remainder we will use quotes since of course the pairing 〈·, ·〉 does not derive from an inner
product.
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It remains to verify (2.22). As in (2.23) one sees that 〈ψ∗1, ψ0〉 = 0. It is immediate that
〈ψ∗0, ψ0〉 = 〈ψ∗1, ψ1〉 = 1. Finally,

〈ψ∗0, ψ1〉 = 〈φ∗0 −
〈φ∗0, φ1〉
〈φ∗1, φ1〉

φ∗1,
1

〈φ∗0, φ0〉
φ1〉 =

〈φ∗0, φ1〉
〈φ∗0, φ0〉

− 〈φ
∗
0, φ1〉
〈φ∗1, φ1〉

· 〈φ
∗
1, φ1〉
〈φ∗0, φ0〉

= 0,

which establishes (2.22).

Now let λ and the vectors q0,1 and φ0,1 as well as p1,0 and φ�1,0 be as in Lemma 2.7. A
simple computation shows that upon application of Lemma 2.8 with E = X = C([−h, 0];Cn)
and L = A we obtain

ψ0 = (θ 7→ eλθ q̃0), ψ1 = (θ 7→ eλθ(θq̃0 + q̃1)), (2.24)

for the normalized (generalized) eigenvectors of A corresponding to λ, while

ψ�1 =

(
p̃1, θ 7→ p̃1

∫ h

θ
eλ(θ−s) dη(s)

)
,

ψ�0 =

(
p̃0, θ 7→ p̃0

∫ h

θ
eλ(θ−s) dη(s) + p̃1

∫ h

θ
eλ(θ−s)(θ − s) dη(s)

)
,

(2.25)

are the normalized (generalized) eigenvectors of A∗ corresponding to λ, where

q̃0 :=
1

〈φ�0 , φ0〉
q0, q̃1 :=

1

〈φ�1 , φ1〉
q1, p̃1 := p1, p̃0 := p0 −

〈φ�0 , φ1〉
〈φ�1 , φ1〉

p1,

and (2.21) holds. Hence in terms of the quantities

κ(p, q) :=
[
p0∆′(λ)q0 +

1

2!
p1∆′′(λ)q0

]−1

=
[
p1∆′(λ)q1 +

1

2!
p1∆′′(λ)q0

]−1
,

(2.26)

and

δ(p, q) := −κ(p, q)
[
p0∆′(λ)q1 +

1

2!
p0∆′′(λ)q0 +

1

2!
p1∆′′(λ)q1 +

1

3!
p1∆′′′(λ)q0

]
, (2.27)

we have
q̃0 = κ(p, q)q0, q̃1 = κ(p, q)q1, (2.28)

and
p̃1 = p1, p̃0 = p0 + δ(p, q)p1. (2.29)

We summarize this in

Proposition 2.9. Let λ and q0,1 and p1,0 be as in Lemma 2.7. Then the quantities κ(p, q) and
δ(p, q) are well-defined (i.e. finite) by (2.26) and (2.27). The vectors ψ0 and ψ1 given by (2.24)
with q̃0,1 as in (2.28) are an eigenvector and a generalized eigenvector of A corresponding to
λ. Likewise, ψ�1 and ψ�0 given by (2.25) with p̃1,0 as in (2.29) are an eigenvector and a
generalized eigenvector of A∗ corresponding to λ. Moreover, these vectors have the property
that

〈ψ�i , ψj〉 = δij , i, j = 0, 1. (2.30)

We point out that the above proposition has reduced the task of finding (generalized)
eigenvectors of A and A∗ satisfying the normalization condition (2.30) to a matter of (finite-
dimensional) linear algebra. This is in line with the other results in this section.
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2.3 The center manifold

We suppose that 0 ∈ X is an equilibrium of (DDE) and we return to the splitting (2.13),

ẋ(t) =

∫ h

0
dη(θ)xt(−θ) + (F (xt)−DF (0)xt). (2.31)

In this section we will be concerned with the case of a non-hyperbolic equilibrium, i.e.

σ(A) ∩ iR 6= ∅. (2.32)

Here iR denotes the imaginary axis in the complex plane and A is the generator of the
semigroup T solving the linear DDE defined by η.

The proof of existence of a smooth center manifold for DDE is more subtle than the
corresponding proof for the ODE case, but the essential ideas are the same. Let the center
subspace X0 ⊂ X be defined as the direct sum

X0 =
⊕
{Mλ : λ ∈ σ(A) ∩ iR}.

HereMλ is the generalized eigenspace corresponding to λ. By the first statement of Theorem
2.3 the sum contains only a finite number of finite-dimensional terms. Consequently X0 is
finite-dimensional. Let P0 ∈ L(X) be the spectral projector of X onto X0 and denote its
extension to X�? with range X0 by P�?0 ∈ L(X�?, X).

Remark 2.10. The subspace X0 is spanned by a basis consisting of (generalized) eigenvectors
of A corresponding to eigenvalues on the imaginary axis. It is this basis, available explicitly
for the cases of our interest from Lemmas 2.5 and 2.7 above, that we shall use in Chapter
3 as a coordinate system with respect to which we express the dynamics of y generated by
(2.35) below. ♦

Now let ξ : R+ → R be a C∞-smooth cut-off function with the properties

ξ(s) ∈


{1}, 0 ≤ s ≤ 1,

[0, 1], 1 ≤ s ≤ 2,

{0}, 2 ≤ s.
(2.33)

Define, for any δ > 0, the modified nonlinearity Rδ : X → X�? by

Rδ(φ) := R(φ) ξ

(
‖P0φ‖
δ

)
ξ

(
‖(I − P0)φ‖

δ

)
, (2.34)

where R is given by (2.15). For any φ ∈ X denote by uδ(·, φ) the solution of (AIE, R = Rδ).
(The modification of the nonlinearity is necessary to overcome certain technical difficulties
related to non-invariance of spaces of continuous functions with limited exponential growth
under the so-called substitution (or: Nemytskii) operator associated with R. For a detailed
explanation we refer to Chapter IX of [11].)

Theorem 2.11. For δ > 0 sufficiently small there exists a Ck-smooth injection Cδ : X0 → X
such that its image Cδ(X0), called the global center manifold or center manifold for
short and denoted by Wc

δ , has the following properties:
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i Wc
δ is conditionally locally forward-invariant, in the following sense. If φ ∈ X0 and

sup{‖uδ(t, Cδ(φ))‖ : t ∈ [0, T ]} ≤ δ then uδ(t, Cδ(φ)) = Cδ(P0uδ(t, Cδ(φ))) for all t ∈
[0, T ].

ii Wc
δ contains all solutions of (AIE, R = Rδ) that are defined for all time and satisfy

sup{‖uδ(t, ψ)‖ : t ∈ R} ≤ δ.

iii Wc
δ contains the origin since Cδ(0) = 0 and it is tangent to X0 there, i.e. DCδ(0)φ = φ

for all φ ∈ X0.

iv If ψ ∈ Wc
δ and uδ(·, ψ) exists for all time, then y(t) := P0uδ(t, ψ) ∈ X0 satisfies the

ordinary differential equation

ẏδ(t) = Ayδ(t) + P�?0 Rδ(Cδ(yδ(t))), ∀ t ∈ R. (2.35)

Proof. The construction of the center manifold is carried out by the Perron-Frobenius method,
exploiting the variation-of-constants formula (AIE, R = Rδ) to define an appropriate fixed-
point operator. Statement one to three are Theorem IX.5.3 and (regarding the tangency)
Corollary IX.7.10 in [11]. Establishing Ck-smoothness of C requires work: See §IX.7 there.
One may alternatively exploit the fact that for DDE the nonlinearity takes values in a finite-
dimensional subspace of X�? to arrive at a smooth (as opposed to merely Lipschitz) modified
nonlinearity. As far as the last statement is concerned, projection of (AIE, R = Rδ) onto X0

readily leads to (2.35), see §IX.8.

Remark 2.12. The following two remarks will be of relevance in Chapter 3.

(i) It is important to realize that Wc
δ is a global center manifold for the solution of (AIE,

R = Rδ) which involves the modified nonlinearity. When calculating local normal
forms in Chapter 3, we will be interested in the dynamics of this solution in a small
neighbourhood of zero in X. From item (i) of the previous theorem we see that solutions
that start on the center manifold will remain on it in forward time as long as they stay
in the ball Bδ(0) of radius δ centered at the origin. Item (ii) tells us that the center
manifold captures all solutions that exist and remain in Bδ(0) for all time, such as small
periodic and homo- or heteroclinic orbits. As long as a solution stays in Bδ(0) one sees
from (2.33) and (2.34) that the modification of the nonlinearity becomes immaterial.
Furthermore, for such solutions (2.35) reduces to

ẏ(t) = Ay(t) + P�?0 R(Cδ(y(t))), ∀ t ∈ R, (2.36)

with a right-hand side that is Ck-smooth in y. When it is clear from the context that
we are only interested in the local dynamics of solutions (i.e. the dynamics in Bδ(0)),
we will write Wc and C instead of Wc

δ and Cδ.

(ii) If σ(A) does not contain points in the open right half-plane, then Wc
δ is conditionally

locally exponentially stable. This implies that if a solution of (2.36) that lies in Bδ(0)
for all time is locally exponentially stable within Wc, then it is locally exponentially
stable in X.

It are these properties that make the center manifold a very useful tool for the analysis of
equilibria of DDE. ♦
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We need the following counterpart to (2.35) on the center manifold.

Proposition 2.13. Let ψ ∈ Wc and suppose that the solution t 7→ u(t, ψ) of (AIE) exists as
a map from R to X and lies in Bδ(0) for all t ∈ R. Then u(t, ψ) ∈ Wc for all t ∈ R and
u(t, ψ) is differentiable with respect to t and satisfies

du(t, ψ)

dt
= A�?u(t, ψ) +R(u(t, ψ)), ∀ t ∈ R (2.37)

Proof. Note that in the formulation of the above proposition we employ the convention put
forward in the last sentence of item (i) of Remark 2.12. The first part repeats item (ii) of
Theorem 2.11. The differential equation (2.37) on the center manifold follows directly from
the differential equation (2.35) on the center subspace and the fact that the center manifold
consists of smooth functions, i.e. functions that are at least continuously differentiable.

Note that we cannot replace A�? by A in (2.37), since although we know that the left-hand
side must be in X, the same cannot be said of R(u(t, ψ)).



Chapter 3

Codimension-two critical normal
forms

The primary advantage of the existence of a center manifold for a non-hyperbolic equilibrium
of a DDE is that it enables ‘lifting’ of local bifurcation theory from the finite-dimensional
ODE-setting to the infinite-dimensional setting of DDE. Indeed, solutions of a DDE that
remain in the vicinity of such an equilibrium for all (positive and negative) time satisfy a
finite-dimensional differential equation, as we saw in §2.3. Examples of application of this
principle are the proof of the Hopf bifurcation theorem for DDE in Chapter X of [11] and its
analogue for renewal equations in Theorem 2.21 of [7].

In this chapter we discuss an approach which goes back to Coullet and Spiegel [3] and
was applied by Kuznetsov in [24] to obtain explicit expressions for the critical normal form
coefficients for all generically occurring codimension-one and codimension-two bifurcations of
equilibria in ODE, also see [25, §8.7].

The difference between this and other approaches is essentially twofold. Firstly, the
method does not require a preliminary reduction to the center manifold but rather solves
for the critical normal form and center manifold coefficients simultaneously. Secondly, as we
shall see in this chapter, the expressions obtained for the normal form coefficients involve
numerically accessible data, rendering them suitable for symbolic as well as numerical eval-
uation. Indeed, their ODE counterparts are implemented in the packages CONTENT [27] and
MATCONT [6] for continuation and bifurcation analysis of ODE. As part of his thesis [29] Meijer
applied the method to iterated maps and implemented the results in a command-line version
of MATCONT for maps.

In §3.1 we start with a worked-out example to illustrate the method in the context of
DDE. We shall discuss normalization for the Cusp bifurcation, which is the simplest of
all codimension-two cases. However, it includes the essential steps involved in the general
method. During the discussion it will become clear which mathematical ingredients are needed
in order to proceed with our derivations and arrive at our goal: An expression for the cubic
normal form coefficient at criticality.

In §3.2 we provide these ingredients by formulating a few results on solvability of linear op-
erator equations and the bordered operator matrix approach to dealing with under-determined
systems. The basic concepts are well-known and not difficult, but when specific DDE-related
results are presented, we give detailed proofs.

In §3.3 we briefly return to our initial example. Our discussion that started in §3.1 can

21
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now be concluded with the help of the results derived in §3.2.
In §3.4 we list expressions for the relevant critical normal form coefficients for the Bogdanov-

Takens, generalized Hopf, fold-Hopf and double Hopf bifurcations.
In the remainder of this chapter all the spaces X,X� etc. are as in Table 2.1.

3.1 The method by example: Cusp bifurcation

We recall the setting of §2.3. Suppose that the zero-function is a stationary solution of (DDE)
and write this equation as (2.31),

ẋ(t) =

∫ h

0
dη(θ)xt(−θ) +G(xt) (3.1)

where G : X → Rn is a Ck-smooth function defined by G(φ) := F (φ)−DF (0)φ and satisfying

G(0) = 0, DG(0) = 0. (3.2)

Let A be the generator of the semigroup T solving the linear DDE associated with η and
suppose that λ = 0 is a simple eigenvalue of A, giving rise to a center manifold Wc

δ of the
origin, linearly approximated by the center eigenspace X0. We assume that there are no other
eigenvalues on the imaginary axis. Let φ and φ� be eigenvectors of A and A∗ corresponding
to λ. It is always possible to scale these vectors such that the normalization

〈φ�, φ〉 = 1 (3.3)

holds. Since X0 is the linear span of φ it follows that any point y in X0 can be expressed as
a multiple of φ. Indeed,

y = 〈φ�, y〉φ

see Theorem IV.2.5.vi of [11].
Let ψ ∈ Wc. Recalling the discussion in Remark 2.12, in this section we shall consider

solutions u = u(·, ψ) of (AIE) that exist for all time and lie in the ball Bδ(0) of radius δ
centered at zero. Such solutions lie on Wc and satisfy

ẏ(t) = Ay(t) +G(y(t)) ∀ t ∈ R

where y(t) is the projection of u(t) onto X0 and G : X0 → X0 is a Ck-smooth function defined
by G(φ) := P�?0 R(C(φ)). If we let z(t) := 〈φ�, y(t)〉 then, by the chain rule and the fact that
φ� is a zero-eigenvector,

ż = 〈φ�, G(zφ)〉

The right-hand side of this ODE is Ck-smooth in y. Therefore, by (3.2) it has a Taylor
expansion starting with quadratic terms, say

ż = bz2 + cz3 +O(|z|4), (3.4)

where b and c are real numbers. The goal is to find an expression for the yet unknown
cubic coefficient c in terms of φ, φ� and derivatives of the function F appearing in the
right-hand side of (DDE). The cusp bifurcation is degenerate, in the sense that it is a fold
bifurcation with vanishing quadratic coefficient: b = 0. This necessitates calculation of the
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third-order coefficient. Generically, it requires tuning of two parameters to encounter such
a degeneracy: One parameter to hit a fold point and a second parameter to eliminate the
quadratic coefficient in the fold normal form. Therefore, the cusp is an example of a local
codimension-two bifurcation.

On the center manifold itself u satisfies the differential equation (2.37) which we succinctly
write as

du(t)

dt
= A�?u(t) +R(u(t)) ∀ t ∈ R. (3.5)

We recall from (2.15) that R : X → X�? is given by

R(φ) =
n∑
j=1

gj(φ)r�?j with r�?j = (ej , 0) ∈ X�? (3.6)

where gj is the j-th component of g and ej is the j-th vector in the standard basis of Rn.
By the smoothness of g and (3.2) we may expand R in a power series around the origin in X
starting with quadratic terms,

R(u) =
1

2
B(u, u) +

1

6
C(u, u, u) +O(‖u‖4) (3.7)

The terms B and C are symmetric bounded multilinear forms from X to X�? representing
the derivatives of order two and three of R at the origin. The k-th derivative of R at the
origin henceforth is a mapping from Xk to X�?. In the case of DDE it follows from (3.6) and
the definition of the function g that for arbitrary vectors ξ1 and ξ2 in X,

B(ξ1, ξ2) =

n∑
j=1

[D2G(0)(ξ1, ξ2)]jr
�?
j

=

n∑
j=1

[D2F (0)(ξ1, ξ2)]jr
�?
j

= D2F (0)(ξ1, ξ2)r�?

Here F is the function appearing in the right-hand side of (DDE). The last line is an ‘inner-
like’ product of D2F (0)(ξ1, ξ2) in Rn with r�? := (r�?1 , . . . , r�?n ), used for notational conve-
nience. Analogously, C(ξ1, ξ2, ξ3) = D3F (0)(ξ1, ξ2, ξ3)r�? and so forth.

In addition to the expansions in (3.4) and (3.7) we also expand the Ck-smooth center
manifold mapping C : U ⊂ X0 → X introduced in Theorem 2.11, as follows. We recall that
U is some open ball around the origin and that Wc

loc is tangent to X0 there. Now let ξ be
a point in X0 with coordinate z = 〈φ�, ξ〉 in R1. Since the coordinate mapping ξ 7→ z(ξ) is
a Ck-smooth injection onto some neighbourhood V of the origin in R1, we may introduce a
coordinate-version of C, defined by

H : V ⊂ R1 7→ X, H(z) := C(ξ(z))

and expand it as

H(z) = zφ+
1

2
h2z

2 +
1

6
h3z

3 +O(|z|4). (3.8)

with unknown coefficients hν in X.
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Remark 3.1. We have already used the letter h to indicate the delay, following a literature
convention. Hence there is the risk of confusion when using the same character for the
coefficients in the expansion of H. We expect that it will be clear from the context which of
the two denotations is meant. ♦

Now we are ready to state the so-called homological equation (3.9) below.1 The key
to it is the invariance of the center manifold. More precisely, if y(t) is the projection of the
small solution u(t) onto X0 and z(t) is its coordinate with respect to φ, then

u(t) = H(z(t)) ∀ t ∈ R

Differentiating both sides of this relation with respect to time and using (3.5) we obtain

A�?H(z) +R(H(z)) = DH(z)ż (3.9)

Using (3.7) and (3.4) we can substitute for R and ż their power series and order terms in
powers of z. After some straightforward calculations one arrives at

1

2
z2[A�?h2 +D2F (0)(φ, φ)r�?] +

1

6
z3[A�?h3 + 3D2F (0)(φ, h2)r�?

+D3F (0)(φ, φ, φ)r�?] = bz2φ+ (cφ+ bh2)z3 +O(|z|4) (3.10)

Calculating the normal form coefficients b and c now simply amounts to recursively solving
the above equation by equating coefficients of like powers and solving the corresponding linear
systems. In order to do this we need some results which are explained in the next section.
We shall return to the calculation of the normal form coefficients in §3.3.

3.2 Solvability and bordered operators

We consider the operator A�? appearing in (3.10). When solving the homological equation
we shall encounter operator equations of the form

(λI −A�?)(v0, v) = (w0, w). (3.11)

Here λ is a complex number, (w0, w) is a given vector inX�? and (v0, v) inD(A�?) is unknown.
For the spaces X,X∗, X� and X�? we will use the complex versions of the representations
in Table 2.1. For example, (v0, v) and (w0, w) are elements of Cn × L∞([−h, 0],Cn).

There are two possible cases: If λ is not an eigenvalue of A, then by Theorem 2.3 λ is a
regular value and the closed operator

(λI −A�?) : D(A�?) ⊂ X�? → X�? (3.12)

has a bounded inverse (the resolvent at λ), so

(v0, v) = (λI −A�?)−1(w0, w) (3.13)

1From §2 of [31]: ‘Why this is called a homological equation is seldomly explained and this paper is written
to provide an explanation of this terminology and to define the so-called unique normal form in terms of
spectral sequences.’
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is the unique solution in D(A�?) of (3.11). However, if λ is an eigenvalue of A, then (3.11)
need not have a solution. Moreover, any solution that does exist is not unique, since we may
add to it an arbitrary linear combination of eigenvectors of A�? corresponding to λ.

We shall use the following lemma as a solvability condition on the right-hand side of
(3.11). (In fact, since decompositions analogous to (3.14) below hold for λI −A, λI −A∗ and
λI − A�, it follows from the lemma that all these operators are of Fredholm type for any
choice of λ, but the adjoints among them are in general not norm-densely defined.)

Lemma 3.2 (Fredholm Alternative). Let λ ∈ C be arbitrary. Then (3.11) has a solution
(v0, v) ∈ D(A�?) if and only if (w0, w) annihilates N(λI −A∗).

Proof. We observe that N(λI − A∗) = N(λI − A�). Hence by the Closed Range Theorem
(see e.g. §IV.10 of [36]) the assertion of the lemma is equivalent to (3.12) having closed range,
so we only need to consider the case that λ is an eigenvalue. Suppose that the order of λ as
a pole of z 7→ ∆(z)−1 is equal to kλ ∈ N. Then X�? has the direct sum decomposition

X�? = N [(λI −A�?)kλ ]⊕R[(λI −A�?)kλ ], (3.14)

where the first component is finite-dimensional and the second component is closed, see
Theorem IV.2.5 of [11]. Because R(λI − A�?) contains R[(λI − A�?)kλ ] it too is closed
by Lemma 5.6 of [32].

Let us now assume that (3.11) is consistent, i.e. it has at least one solution. From [11,
Theorem II.5.5 and Corollary III.2.12] we know that the adjoint generator A�? on X�? is
given by

D(A�?) =
{

(α,ψ) ∈ X�? : ψ ∈ Lip(α)
}
, A�?(α,ψ) =

[∫ h
0 dη(θ)ψ(−θ)

ψ̇

]
, (3.15)

where Lip(α) is the subset of L∞([−h, 0],Cn) whose elements contain a Lipschitz continuous
representative having the value α at zero. We note that such a representative is unique, if it
exists. The next result is taken from [11, Corollary IV.5.4].

Lemma 3.3. Suppose λ is not an eigenvalue. Then the unique solution of (3.11) is repre-
sented by

v(θ) = eλθv0 +

∫ 0

θ
eλ(θ−σ)w(σ) dσ, θ ∈ [−h, 0], (3.16)

with

v0 = ∆(λ)−1

[
w0 +

∫ h

0
dη(τ)

∫ τ

0
e−λσw(σ − τ) dσ

]
, (3.17)

where ∆ is the characteristic matrix function from (2.16).

Corollary 3.4. The following two special cases will appear frequently in our calculations.

• Let (w0, w) = (w0, 0). Then the solution of (3.11) is represented by

(v0, v) =

(
∆(λ)−1w0

θ 7→ eλθ∆(λ)−1w0

)
.
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• Let (w0, w) = (0, θ 7→ eλθ∆(λ)−1ζ) for some fixed vector ζ in Cn. Then

(v0, v) =

(
∆(λ)−1[∆′(λ)− I]∆(λ)−1ζ

θ 7→ ∆(λ)−1[∆′(λ)− I − θ∆(λ)]w(θ)

)
.

Proof. The first representation follows immediately by substitution into (3.16) and (3.17).
For the second representation, we first calculate v0 from (3.17) as

v0 = ∆(λ)−1

∫ h

0
dη(τ)

∫ τ

0
e−λσeλ(σ−τ) dσ∆(λ)−1ζ

= ∆(λ)−1

∫ h

0

∫ τ

0
e−λτ dσ dη(τ)∆(λ)−1ζ

= ∆(λ)−1

∫ h

0
τe−λτ dη(τ)∆(λ)−1ζ

= ∆(λ)−1[∆′(λ)− I]∆(λ)−1ζ.

Substituting this into (3.16) we obtain, for θ ∈ [−h, 0],

v(θ) = eλθv0 +

∫ 0

θ
eλ(θ−σ)eλσ dσ∆(λ)−1ζ

= eλθv0 − θeλθ∆(λ)−1ζ

= eλθ∆(λ)−1[∆′(λ)− I]∆(λ)−1ζ − θeλθ∆(λ)−1ζ

= ∆(λ)−1[∆′(λ)− I − θ∆(λ)]eλθ∆(λ)−1ζ

= ∆(λ)−1[∆′(λ)− I − θ∆(λ)]w(θ).

If λ is an eigenvalue, a solution of (3.11) is not unique, if it exists. In a sense the following
simple lemma makes an arbitrary but (as we shall see) convenient choice among all solutions
available: It singles out the solution ‘orthogonal’ to the eigenspace of λ.

Lemma 3.5. Let L : D(L) ⊂ E → E be a closed, densely defined linear operator on a complex
Banach space E. Suppose that zero is a simple eigenvalue of L and L∗ with corresponding
eigenvectors ψ and ψ∗. Let P be the spectral projector from E onto the zero-eigenspace.
Assume that for given y∗ ∈ E∗ there exists a particular solution x∗0 in D(L∗) of the equation

L∗x∗ = y∗. (3.18)

Then the augmented system {
L∗x∗ + sψ∗ = y∗,

〈x∗, ψ〉 = 0,
(3.19)

has a unique solution x∗ = (I−P ∗)x∗0 and s = 0, and x∗ is the unique solution of (3.18) that
annihilates ψ.

Hence, if λ is a simple eigenvalue of A and (3.11) is consistent, then we can apply Lemma
3.5 to the (closed and densely defined) linear operator L = λI − A� on X� with domain
D(A�) to obtain the unique solution of (3.11) that vanishes on the eigenspace corresponding
to λ.
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Proof of Lemma 3.5. The adjoint P ∗ is exactly the spectral projector from E∗ onto the kernel
of L∗. It can be represented as

P ∗ =
〈·, ψ〉
〈ψ∗, ψ〉

ψ∗.

This shows that x∗ is in D(L∗) and satisfies (3.19). Suppose (x∗1, s1) is another solution. Then

L∗(x∗ − x∗1) + (s− s1)ψ∗ = 0, (3.20)

and by pairing with ψ,

〈x∗ − x∗1, Lψ〉 + (s− s1)〈ψ∗, ψ〉 = 0.

The first term vanishes because ψ is an eigenvector. Since 〈ψ∗, ψ〉 6= 0 it follows that s1 = s
and from (3.20) we see that x∗ − x∗1 = γψ∗ for some γ ∈ C. Pairing with ψ leads to γ = 0
and thus x∗1 = x∗.

One may note that (3.19) at least formally looks like the operator matrix equation[
L∗ ψ∗

ψ 0

] [
x∗

s

]
=

[
y∗

0

]
.

Such systems containing auxiliary equations and unknowns are called bordered systems.
The unique solution x∗ mentioned in the lemma shall be denoted by x∗ = [L∗]INV y∗. Those
familiar with [24] may notice that the above lemma is nothing more than an adaptation of
(4.6) in that reference to the present operator setting of delay equations. For a discussion of
finite dimensional bordered systems and their numerical analysis, see [17, Chapter 3] and the
references therein.

The only thing still lacking is a representation for (λI − A�?)INV when λ is a simple
eigenvalue, analogous to Lemma 3.3 which applies to the regular case.

Proposition 3.6. Suppose λ is a simple eigenvalue of A and assume that (3.11) is consistent
for a given (w0, w) ∈ X�?. Let q ∈ Cn, φ ∈ X, p ∈ Cn and φ� ∈ X� be as in Lemma 2.5,
normalized to 〈φ�, φ〉 = 1. Then the bordered inverse (λI−A�?)INV (w0, w) is represented by

v(θ) = eλθv0 +

∫ 0

θ
eλ(θ−σ)w(σ) dσ, θ ∈ [−h, 0], (3.21)

with

v0 = ξ + γq, ξ := ∆(λ)INV
[
w0 +

∫ h

0
dη(τ)

(∫ τ

0
e−λσw(σ − τ) dσ

)]
. (3.22)

The constant γ is given by

γ = −p∆′(λ)ξ − p
∫ h

0

(∫ h

τ
e−λs dη(s)

)(∫ 0

−τ
e−λσw(σ) dσ

)
dτ. (3.23)

Proof. We see from (3.15) that the second component of (λI − A�?)INV (w0, w) admits a
Lipschitz continuous representative v : [−h, 0]→ Cn satisfying

λv − v̇ = w, v(0) = v0. (3.24)
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The first equality holds almost everywhere and v0 is the first component of (λI−A�?)INV (w0, w).
Any Lipschitz continuous solution of (3.24) is unique - integrate and use Gronwall’s inequality
- and the right-hand side of (3.21) is such a solution, so (3.21) itself follows. Meanwhile, from
(3.15) we see that v0 satisfies the equality

λv0 −
∫ h

0
dη(θ)v(−θ) = w0,

and upon substitution for v using (3.21) this yields the consistent finite dimensional linear
system

∆(λ)v0 = w0 +

∫ h

0
dη(τ)

∫ τ

0
e−λσw(σ − τ) dσ.

Consequently the bordered matrix inverse in the definition of ξ in (3.22) is well-defined.
Incidentally, from the proof so far we observe that it is no coincidence that (3.21) repro-

duces (3.16). Likewise, the argument of the bordered matrix inverse in the expression for ξ
is identical to the argument of the ordinary matrix inverse in (3.17).

Since the one-dimensional nullspace of ∆(λ) is spanned by q, the expression for v0 follows
for some γ ∈ C. The value of γ is determined by the requirement that

〈(v0, v), φ�〉 = 0. (3.25)

According to Lemma 2.5 and the formula for the duality pairing between X�? and X� in
Table 2.1, we have

〈(v0, v), φ�〉 = 〈(v0, v),

(
p, θ 7→ p

∫ h

θ
eλ(θ−s) dη(s)

)
〉

= pv0 +

∫ h

0

(
p

∫ h

θ
eλ(θ−s) dη(s)

)(
e−λθv0 +

∫ 0

−θ
e−λ(θ+σ)w(σ) dσ

)
dθ

= pv0 + p

∫ h

0

∫ h

θ
e−λs dη(s) dθv0 + p

∫ h

0

(∫ h

θ
e−λs dη(s)

)(∫ 0

−θ
e−λσw(σ) dσ

)
dθ.

Using Fubini’s theorem and the definition of ∆, we obtain for the sum of the first two terms,

pv0 + p

∫ h

0

∫ h

θ
e−λs dη(s) dθv0 = p∆′(λ)v0.

Let us denote the third term by I. Requiring (3.25) implies that p∆′(λ)(ξ + γq) + I = 0.
Since p∆′(λ)q = 〈φ�, φ〉 = 1 by assumption, it follows that

γ = −p∆′(λ)ξ − I,

which is (3.23).

We shall frequently encounter the following special case.

Corollary 3.7. Suppose in addition that (w0, w) = (ζ, 0) + κ(q, φ) where the column vector
ζ ∈ Cn and κ ∈ C are arbitrary. Then

v0 = ξ + γq, v(θ) = eλθ(v0 − κθq), θ ∈ [−h, 0], (3.26)

with

ξ = ∆(λ)INV (ζ + κ∆′(λ)q) and γ = −p∆′(λ)ξ +
1

2
κp∆′′(λ)q. (3.27)
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Proof. We note that ζ and κ are uniquely determined for a given (w0, w). The results are now
obtained by substitution into Proposition 3.6 and subsequent simplification. The formula for
γ in (3.27) also requires one application of Fubini’s theorem.

In this case we will employ the notation v = BINV
λ (ζ, κ) to succinctly denote the bordered

inverse.

3.3 The cusp bifurcation revisited

We now continue the discussion that we left in §3.1 after the derivation of (3.10). From
this point on all the computations are completely analogous to those carried out for the
cusp bifurcation in ODE in [24, §5]. Indeed, the resulting formulas will formally (that is, in
appearance) be almost identical. This is the virtue of the center manifold reduction and the
relatively simple spectral theory of delay equations.

Equating coefficients of z2 in the left and right-hand sides of (3.10) leads to the linear
system

A�?h2 = −D2F (0)(φ, φ)r�? + 2bφ (3.28)

This equation is singular, since λ = 0 is assumed to be a simple eigenvalue of A. By the
Fredholm Alternative (Lemma 3.2) and the chosen normalization (3.3) it has a solution if and
only if

−〈D2F (0)(φ, φ)r�?, φ�〉 + 2b = 0

which happens if and only if

b =
1

2
〈D2F (0)(φ, φ)r�?, φ�〉 (3.29)

We thus found the quadratic coefficient in the critical normal form (3.4) and recall that at
the cusp bifurcation b = 0. Had we been interested in non-degenerate fold bifurcation, then
we could have stopped here. We note that (3.28) may now be assumed consistent, and using
Lemma 3.5 we can write

h2 = −[A�?]INVD2F (0)(φ, φ)r�? (3.30)

for the unique solution h2 in X satisfying 〈φ�, h2〉 = 0.

Proceeding with the coefficients of z3 terms we find the linear equation

A�?h3 = cφ− 1

6
[3D2F (0)(φ, h2)r�? +D3F (0)(φ, φ, φ)r�?]

which is singular as well. The Fredholm Alternative implies that

c =
1

6
〈3D2F (0)(φ, h2)r�? +D3F (0)(φ, φ, φ)r�?, φ�〉 (3.31)

This equation gives an expression for the cubic coefficient in the critical normal form, but we
are not done yet: We still need to evaluate the ‘abstract’ pairings in (3.29) and (3.31).

Firstly, using Table 2.1 and Lemma 2.5 we observe that (3.29) becomes

b =
1

2
pD2F (0)(φ, φ) (3.32)
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which cannot be made any more concrete since F clearly depends on the specific system
under investigation. Note, however, that the right-hand side of (3.32) is now an ordinary
inner product in Rn which can be evaluated straightforwardly, e.g. on a computer. Similarly,
(3.31) becomes

c =
1

6
p[3D2F (0)(φ, h2) +D3F (0)(φ, φ, φ)] (3.33)

where h2 is calculated from (3.30) using Corollary 3.7 with ζ = −D2F (0)(φ, φ) and κ = 0.
Plugging this in and using that λ = 0 yields

h2(θ) = −∆(0)INVD2F (0)(φ, φ) + [p∆′(0)∆(0)INVD2F (0)(φ, φ)]q (3.34)

so h2 is a constant function in X = C([−h, 0],Rn).

We conclude our discussion of the cusp bifurcation with a rather trivial example that serves
to illustrate the application of the formulas just derived in the simplest possible setting. For
more elaborate examples the reader is referred to Chapter 4.

Example 3.8. Consider the scalar DDE

ẋ(t) = α1x(t) + g(x(t− 1)) = F (xt) (3.35)

with g : R → R a function of class C3 satisfying g(0) = 0 and α1 a real scalar parameter.
Expansion around the zero-equilibrium yields

ẋ(t) = α1x(t) + g′(0)x(t− 1) +
1

2
g′′(0)[x(t− 1)]2 +

1

6
g′′′(0)[x(t− 1)]3 +O([x(t− 1)]4) (3.36)

Theorem 2.3 justifies substitution of eλt into the linearized equation to obtain the character-
istic ‘matrix’

∆(λ) = α1 − λ+ g′(0)e−λ

= α1 + g′(0)− (1 + g′(0))λ+
1

2
g′(0)λ2 +O(λ3)

We see that λ = 0 is a simple eigenvalue provided α1 = −g′(0) 6= 1. This indicates the
occurrence of a fold bifurcation. When α1 = −g′(0) = 1 we observe that λ has multiplicity
two, in which case generically a Bogdanov-Takens bifurcation takes place. The latter was
analyzed in [11, §IX.10] using the standard two-step approach of center manifold reduction
and subsequent normalization. Here we shall concentrate on the former case and henceforth
we assume that

α1 = −g′(0) 6= 1. (3.37)

We start by regarding α1 as the parameter, leaving all other quantities fixed. We choose

q = 1, p =
1

g′(0)− 1

By Lemma 2.5 for this choice the corresponding eigenvectors φ and φ� are properly normalized
to satisfy 〈φ�, φ〉 = 1. The second derivative of F equals

D2F (0)(ξ1, ξ2) = g′′(0)ξ1(t− 1)ξ2(t− 1) (ξ1, ξ2 ∈ X)
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Note that this is indeed a symmetric bilinear R-valued form on X. Substitution into (3.32)
then yields the quadratic critical normal form coefficient

b =
1

2

g′′(0)

g′(0)− 1

Therefore we may conclude that if (3.37) holds and the parameter α1 enters the system (3.35)
generically, then the trivial equilibrium of (3.35) is a fold point, provided g′′(0) 6= 0. This is
not very surprising, since g′′(0) is proportional to the quadratic term in the expansion (3.36).

Next we free α2 := g′′(0) as a second parameter. Suppose that α2 = 0, leading to a
vanishing quadratic coefficient b. (Such may also occur in the one-parameter situation when
(3.35) has a Z2-symmetry, i.e. is invariant under the substitution x→ −x. This illustrates the
general phenomenon that symmetries lower the codimension of a bifurcation, i.e. the number
of defining bifurcation conditions.) A simple calculation shows that all bordered inverses in
(3.34) vanish, leaving us with h2 = 0 identically. The third derivative of F equals

D3F (0)(ξ1, ξ2, ξ3) = g′′′(0)ξ1(t− 1)ξ2(t− 1)ξ3(t− 1) (ξ1, ξ2, ξ3 ∈ X)

Consequently we see from (3.33) that the cubic critical normal form coefficient is given by

c =
1

6

g′′′(0)

g′(0)− 1

Hence if (3.37) holds and there is generic dependence on the two-dimensional parameter
α = (α1, α2), then the zero-equilibrium of (3.35) exhibits a non-degenerate cusp singularity,
provided g′′′(0) 6= 0. At such a point two fold branches meet tangentially in the parameter
plane. This causes a hysteresis effect [25, §8.2.2].) ♦

3.4 Computation of critical normal form coefficients

In the three foregoing sections we explained in detail how the normalization method works
in the case of the simplest local codimension-two bifurcation, the cusp. To this end some
auxiliary techniques were introduced in §3.2. In this section we first summarize the method
in generality for the computation of critical normal form coefficients. Next, it is applied to
derive expressions for the critical normal form coefficients of the remaining four out of five
generically possible codimension-two bifurcations of equilibria in DDE.

In order to be as unambiguous as possible, in this and the next section we will pay closer
attention to the underlying scalar field and the question of complexification [11, §III.7 and
last part of §IV.2] than we have been doing so far.

3.4.1 The method

Suppose again that the zero-function is a stationary solution of (DDE) on the real Banach
space X = C([−h, 0],Rn). Let A be the generator of the semigroup T on X corresponding to
the solution of the linearized equation

ẋ(t) = DF (0)xt. (3.38)

Suppose that one of the bifurcation conditions in Table 3.1 is satisfied and A has no other
eigenvalues on the imaginary axis. Let P0 be the real spectral projector on X associated with



32 3.4. COMPUTATION OF CRITICAL NORMAL FORM COEFFICIENTS

name used in this text alternative name bifurcation condition

cusp λ1 = 0, b = 0

Bogdanov-Takens Takens-Bogdanov λ1 = λ2 = 0

generalized Hopf Bautin λ1,2 = ±iω0, ω0 > 0, l1(0) = 0

fold-Hopf zero-Hopf λ1 = 0, λ2,3 = ±iω0, ω0 > 0

double Hopf Hopf-Hopf λ1,4 = ±iω1, λ2,3 = ±iω2, ω1,2 > 0

Table 3.1: All generically possible two-parameter bifurcations of equilibria in DDE. The bi-
furcation condition lists the eigenvalues of the generator A of the semigroup T corresponding
to the solution of (3.38). The coefficient b is the quadratic coefficient in the fold normal form,
which vanishes in the cusp case. The first Lyapunov coefficient l1(0) is the cubic coefficient in the
complex Hopf normal form, evaluated at criticality. It vanishes in the case of a generalized Hopf
bifurcation.

the purely imaginary eigenvalues of A. The range X0 of P0 is the real center subspace with
finite dimension n0 ≥ 1. Let Φ be a basis for X0. There exists a local center manifold Wc

loc

for the origin in X that is the image of a Ck-smooth map C : D(C) ⊆ X0 → X defined on
some neighborhood D(C) of the origin. Let H : D(H) ⊆ Rn0 → X be the representation of C
with respect to the basis Φ.

If u : I → X is a solution of (AIE) on some non-trivial interval I ⊆ R and u(t) ∈ Wc
loc for

all t ∈ I, then u is differentiable on I and satisfies the differential equation

u̇(t) = A�?u(t) +R(u(t)), t ∈ I. (3.39)

By definition and in line with the terminology used in [25, §5.1 and §8.7], the restriction
of (3.39) to Wc

loc is the differential equation for y = P0u obtained from (3.39) by projection
onto X0. In coordinates this restriction take the form

v̇(t) = G(v(t)), t ∈ I, (3.40)

where v(t) = [y(t)]Φ ∈ Rn0 is a coordinate vector with respect to Φ and G is a Ck-smooth
vector field on Rn0 . We therefore have the relation

u(t) = H(v(t)), t ∈ I.

Substitution of the previous two equations into (3.39) then yields the homological equation

DH(v(t))G(v(t)) = A�?H(v(t)) +R(H(v(t))), t ∈ I. (3.41)

Naturally there exist many different solutions for the unknowns G and H, corresponding to
different parametrizations ofWc

loc. We require that G and H are such that (3.40) is the critical
normal form of the bifurcation of interest, up to terms of sufficiently high order. For this we
expand

G(v) =

N∑
|µ|=1

1

µ!
gµv

µ +O(|v|N+1), H(v) =

N∑
|µ|=1

1

µ!
hµv

µ +O(|v|N+1), (3.42)
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in the unknown critical normal form coefficients gµ ∈ Rn0 and the unknown center manifold
coefficients hµ ∈ X. The order N is chosen large enough such that all the desired gµ ∈ Rn0

are explicitly present. We also expand the nonlinearity R in (3.39) as

R(u) =
N∑
j>1

1

j!
DjF (0)(u, . . . , u)r�? +O(|u|N+1), (3.43)

where the continuous j-linear form DjF (0) : Xj → Rn is the jth derivative of F at 0 ∈ X.
Substituting (3.42) and (3.43) into (3.41) and collecting coefficients of increasing powers of

v, we can solve inductively for the unknown coefficients gµ and hµ by applying the Fredholm
alternative and taking bordered inverses as discussed in §3.2.

3.4.2 List of codimension-two normal forms

Among the five bifurcations in Table 3.1, the cusp, Bogdanov-Takens and generalized Hopf
bifurcations have topological parameter-dependent normal forms [25, Definition 2.16]. As
part of that definition, topological normal forms are polynomial systems of finite order. In
contrast, the fold-Hopf and double Hopf bifurcations admit only approximate parameter-
dependent normal forms [25, end of §8.1].

Below we list critical normal forms for each bifurcation. It is important to use normal
forms that do not involve time reparametrization, because the time derivatives in (3.39) and
(3.40) use the same unit of time. We then explain - for each case and with detailed references
- how the critical coefficients enter the (exact or approximate) parameter-dependent normal
forms.

Cusp

The cusp bifurcation was already discussed in §3.1 and §3.3. The coefficient c from (3.4)
enters the topological normal form [25, Theorem 8.1] via the coefficient s = sign c of the cubic
term.

Bogdanov-Takens

A critical normal form for (3.40) that can be obtained without time reparametrization is given
by {

ż0 = z1,

ż1 = a2z
2
0 + b2z0z1 +O(‖z‖3),

(3.44)

with z = (z0, z1) ∈ R2 and a2 and b2 are real coefficients [25, (8.49)]. Non-degeneracy is
checked by verifying that a2 6= 0 and b2 6= 0. If this is the case, then s = sign (a2b2) enters
the topological normal form as the coefficient of the η1η2-term in [25, Theorem 8.5].

In §3.5.2 we will also provide expressions for critical coefficients a3 and b3 of order three
in the critical normal form [26]{

ż0 = z1,

ż1 = a2z
2
0 + b2z0z1 + a3z

3
0 + b3z

2
0z1 +O(‖z‖4).

(3.45)

This is done for the purpose of discussing an example of degeneracy due to symmetry in §4.2.
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Generalized Hopf

For (3.40) we use the Poincaré normal form for the generalized Hopf bifurcation [25, Lemma
8.3], at criticality given by

ż = iω0z + c1z|z|2 + c2z|z|4 +O(|z|6), (3.46)

where c1 and c2 are complex. The derivation of this normal form does not require a time
reparametrization. The first and second Lyapunov coefficients are given by

l1(0) =
1

ω0
Re c1, l2(0) =

1

ω0
Re c2.

For a generalized Hopf bifurcation l1(0) = 0 and non-degeneracy is verified by checking that
the second Lyapunov coefficient l2(0) 6= 0. It enters the topological normal form [25, Theorem
8.3] via the coefficient s = sign l2(0) of the fifth-order term. The bifurcation is supercritical
when s = −1 and subcritical when s = +1.

Fold-Hopf

We use the Poincaré normal form for the fold-Hopf bifurcation [25, Lemma 8.9], at criticality
given by{

ż0 = G200z
2
0 +G011|z1|2 +G300z

3
0 +G111z0|z1|2 +O(‖(z0, z1, z̄1)‖4),

ż1 = iω0z1 +H110z0z1 +H210z
2
0z1 +H021z1|z1|2 +O(‖(z0, z1, z̄1)‖4),

(3.47)

where the coefficients Gjkl are real, the Hjkl are complex and ‖(z0, z1, z̄1)‖2 = z2
0 + |z1|2.

Non-degeneracy is verified by checking that G200 6= 0, G011 6= 0 and E(0) 6= 0, where

E(0) = Re

[
H210 +H110

(
ReH021

G011
− 3G300

2G200
+

G111

2G011

)
− H021G200

G011

]
. (3.48)

Truncation of the smooth normal form [25, Theorem 8.6] gives an approximate normal form
that is not a topological normal form. In the analysis of the approximate normal form different
cases are distinguished, depending on the values of the coefficients

s = sign (G200G011), θ =
ReH110

2G200
,

[25, §8.5.2]. Only for the case s = +1, θ > 0 can all terms beyond quadratic order in
the smooth normal form be truncated to obtain a locally topologically equivalent quadratic
system [25, Theorem 8.7].

Double Hopf

Assuming the non-resonance conditions

kω1 6= lω2, ∀ k, l ∈ N with k + l ≤ 5, (3.49)
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we use the Poincaré normal form for the double Hopf bifurcation [25, Lemma 8.13], at criti-
cality given by

ż1 = iω1z1 +G2100z1|z1|2 +G1011z1|z2|2 +G3200z1|z1|4 +G2111z1|z1|2|z2|2

+G1022z1|z2|4 +O(‖(z1, z̄1, z2, z̄2‖6)

ż2 = iω2z2 +H1110z2|z1|2 +H0021z2|z2|2 +H2210z2|z1|4 +H1121z2|z1|2|z2|2

+H0032z2|z2|4 +O(‖(z1, z̄1, z2, z̄2‖6)

(3.50)

where the coefficients Gjklm and Hjklm are all complex and ‖(z1, z̄1, z2, z̄2)‖2 = |z1|2 + |z2|2.
Non-degeneracy is verified by checking that the real parts of the cubic coefficients are all
non-zero,

p11 := ReG2100 6= 0,

p12 := ReG1011 6= 0,

p21 := ReH1110 6= 0,

p22 := ReH0021 6= 0.

(3.51)

Truncation of the smooth normal form [25, Theorem 8.8] produces an approximate normal
form that is not a topological normal form. It has very rich dynamics. One distinguishes
between the simple case (p11p22 > 0) and the difficult case (p11p22 < 0). Depending on the
values of the coefficients

θ :=
p12

p22
, δ :=

p21

p11
,

multiple subcases are discerned [25, §8.6.2]. The analysis requires the imposition of a number
of extra nondegeneracy conditions that can be expressed in terms of the coefficients pjk from
(3.51) as well as - for the difficult case - the coefficients s1 and s2 of order five.

3.4.3 A remark on generality and presentation

Before we present our formulas for the various critical normal form coefficients, we pause to
comment on our presentation of the various bifurcation formulas that will follow. For those
readers familiar with finite-dimensional applications of the normalization method, e.g. to
ODEs in Chapter 8.7 of [25] or to maps in Chapter 3 of [29], it will by now have become
quite clear that all the formulas found in these references carry over, formally, to the case
of DDE. Put simplistically, one merely need add a � here and a ∗ there and one is done.
This is entirely due to the existence of a local center manifold for DDE. Clearly then, it is to
be expected that any infinite-dimensional dynamical system admitting reduction to a finite-
dimensional center manifold near an equilibrium is amenable to the normalization method
discussed here, provided the generators of its linearizations are sufficiently well-behaved to
allow for application of the Fredholm Alternative, i.e. they should have closed range, see the
proof of Lemma 3.2.

With these considerations in mind, one could present the bifurcation formulas below in
a rather general form, leaving expressions involving dual pairings as well as bordered inverse
unevaluated. By proceeding in this way, one achieves results that are applicable to any
evolution equation fitting in the general sun-star framework of §2.1, and not only to DDE.
For instance, the formulas found would be equally well applicable to renewal equations and
mixed systems, see [7]. Moreover, these results would be formally almost identical to those
found in the finite-dimensional case.
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However, as I already expressed in the introductory Chapter 1, it is my opinion that one
should not only strive for generality but also for what one might call call evaluability. In order
to actually use the formulas found below in applications, one should be able to evaluate the
dual pairings and (bordered) inverses appearing in them, ideally as ordinary inner products
and matrix-vector multiplications. At this lower level of abstraction the characteristic matrix
plays a prominent role, see e.g. Lemma 3.3, Proposition 3.6 and their respective corollaries.
In essence it allows us to replace an operator (A,A∗, . . .) on an infinite-dimensional space
by a matrix without any additional discretization or limit procedure. I want to stress the
far-reaching consequences of this result by exploiting it to make the bifurcation formulas as
explicit as possible, and this is what has been done below. I hope that the reader will see
the general applicability of these formulas even though I have chosen not to present them in
their most general form.

3.5 Critical normal form coefficients

Here we shall derive the critical coefficients for the remaining four bifurcations mentioned in
Table 3.1, but we will be slightly more brief than in the cusp case.

3.5.1 Cusp

The cubic normal form coefficient c appearing in the cusp normal form has been derived in
§3.3, see (3.33).

3.5.2 Bogdanov-Takens

At this bifurcation σ(A) contains a zero-eigenvalue of geometric (algebraic) multiplicity one
(two) and there are no other eigenvalues on the imaginary axis. Therefore, there exist eigen-
vectors φ0 and φ�1 and generalized eigenvectors φ1 and φ�0 of A and A∗,

Aφ0 = 0, Aφ1 = φ0, A∗φ�1 = 0, A∗φ�0 = φ�1

and these span the respective generalized eigenspaces. Let q0, q1 be the column vectors and
p1, p0 be the row vectors mentioned in Lemma 2.7. By an application of the Fredholm Alter-
native (Lemma 3.2) to the decomposition of X into the direct sum of the closed range and
finite-dimensional kernel of the spectral projector associated with the zero-eigenvalue, it is
easy to see that it is always possible to achieve a scaling such that the following ‘biorthogo-
nality’ relation is satisfied:

〈φ�i , φj〉 = δij (i, j = 0, 1) (3.52)

In practice this scaling can be achieved by an application of formulas (2.19). If we let z ∈ R2

represent a coordinate vector with respect to {φ0, φ1}, then the homological equation (3.41)
becomes

A�?H(z) +R(H(z)) = Dz0H(z)ż0 +Dz1H(z)ż1 (3.53)

with H in (3.42) taking the form

H(z) = z0φ0 + z1φ1 +
1

2
h20z

2
0 + h11z0z1 +

1

2
h02z

2
1

+
1

6
h30z

3
0 +

1

2
h21z

2
0z1 +

1

2
h12z0z

2
1 +

1

6
h03z

3
1 +O(‖z‖4)
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and ż given by (3.45). Note that N = 3 because both quadratic and cubic coefficients are
sought. Collecting the z2

0-terms and the z0z1-terms in (3.53) yields two singular linear systems:

A�?h20 = 2a2φ1 −D2F (0)(φ0, φ0)r�?

A�?h11 = h20 + b2φ1 −D2F (0)(φ0, φ1)r�?
(3.54)

By the Fredholm Alternative the first of these has a solution if and only if

a2 =
1

2
p1D

2F (0)(φ0, φ0) (3.55)

which determines the first quadratic coefficient. Now that we know there exists a solution
h20 in D(A�?) wee see by virtue of (3.52) that

〈φ�1 , h20〉 = 〈A�φ�0 , h20〉 = 〈A�?h20, φ
�
0 〉 = −p0D

2F (0)(φ0, φ0)

Demanding solvability of the second equation in (3.54) then yields

b2 = p0D
2F (0)(φ0, φ0) + p1D

2F (0)(φ0, φ1) (3.56)

We observe that for the quadratic coefficients a2 and b2 no (bordered) inverses need to be
evaluated.

We give expressions for the cubic coefficients a3 and b3 without proof. For hints in an
ODE-context, see [26], where issues of simplification and computation for coefficients of orders
up to and including four are discussed. We find:

a3 =
1

2
p1D

2F (0)(h20, φ0)− 1

2
a2p1D

2F (0)(φ1, φ1) +
1

6
p1D

3F (0)(φ0, φ0, φ0) (3.57)

and

b3 =
1

2
p1

{
D2F (0)(h20, φ1) + 2D2F (0)(h11, φ0) +D3F (0)(φ0, φ0, φ1)

}
+

1

2
p0

{
3D2F (0)(h20, φ0) +D3F (0)(φ0, φ0, φ0)

}
+ a2p0D

2F (0)(φ1, φ1)− 5a2〈φ�0 , h11〉 −
1

2
b2p1D

2F (0)(φ1, φ1)

(3.58)

where h20 and h11 are found by applying the bordered inverse to the respective right-hand
sides of (3.54). Explicit expressions for the solutions require a non-simple counterpart to
Proposition 3.6, but since our examples in Chapter 4 do not require these, we refrain from
stating such a result.

3.5.3 Generalized Hopf

In this case σ(A) contains a simple purely imaginary pair λ1,2 = ±iω0 with ω0 > 0 and
no other purely imaginary eigenvalues. Let φ and φ� be complex eigenvectors of A and A∗

corresponding to λ1 = +iω0 and let q and p be as in Lemma 2.5. It is always possible to
achieve the normalization

〈φ�, φ〉 = 1. (3.59)
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Any point y in the real two-dimensional center subspace X0 corresponding to λ1,2 may be
uniquely expressed with respect to the set {φ, φ̄} by means of the smooth complex coordinate
mapping

y 7→ (z, z̄), z := 〈φ�, y〉.

The homological equation presently becomes

A�?H(z, z̄) +R(H(z, z̄)) = DzH(z, z̄)ż +Dz̄H(z, z̄) ˙̄z,

with center manifold expansion

H(z, z̄) = zφ+ z̄φ̄+
∑

2≤j+k≤5

1

j!k!
hjkz

j z̄k +O(|z|6).

Note that since the image of H lies in the real space X, it follows that its coefficients satisfy
hkj = h̄jk. The derivatives ż and ˙̄z are given by (3.46) and its complex conjugate. Since
fifth-order terms will be computed, we set N = 5 in the expansion (3.43) of R.

The linear systems corresponding to the quadratic terms z2 and zz̄ in the homological
equation are both non-singular, so Corollary 3.4 applies and gives

h20(θ) = e2iω0θ∆(2iω0)−1D2F (0)(φ, φ),

h11(θ) = ∆(0)−1D2F (0)(φ, φ̄).
(3.60)

There are two linear systems corresponding to the cubic terms z3 and z2z̄. The first of
them is non-singular and may be solved by ordinary inversion,

h30(θ) = e3iω0θ∆(3iω0)−1[3D2F (0)(φ, h20) +D3F (0)(φ, φ, φ)], (3.61)

while the second one is singular,

(iω0I−A�?)h21 =
[
D3F (0)(φ, φ, φ̄) +D2F (0)(φ̄, h20) + 2D2F (0)(φ, h11)

]
r�?−2c1φ. (3.62)

By the Fredholm Alternative this system is consistent if and only if

c1 =
1

2
p
[
D2F (0)(φ̄, h20) + 2D2F (0)(φ, h11) +D3F (0)(φ, φ, φ̄)

]
, (3.63)

with h20 and h11 given by (3.60). This expression may be compared to [11, Theorem X.3.9].
By bordered inversion, the unique solution of (3.62) satisfying 〈φ�, h21〉 = 0 is

h21(θ) = BINV
iω0

(D3F (0)(φ, φ, φ̄) +D2F (0)(φ̄, h20) + 2D2F (0)(φ, h11),−2c1)(θ), (3.64)

where we employed the notation introduced immediately following Corollary 3.7. From now
on we assume that

l1(0) =
1

2ω0
(c1 + c̄1) =

1

ω0
Re c1 = 0, (3.65)

since otherwise the Hopf bifurcation would be non-degenerate and there would be no reason
to proceed. The assumption (3.65) simplifies certain bifurcation formulas below.



CHAPTER 3. CODIMENSION-TWO CRITICAL NORMAL FORMS 39

Corresponding to the fourth-order terms z4, z3z̄ and z2z̄2 we find three non-singular linear
systems, but only two of them will appear in the expression for c2 below. The system for h22

is easily solved to give

h22(θ) = ∆(0)−1[2D2F (0)(φ̄, h21) + 2D2F (0)(h11, h11) + 2D2F (0)(φ, h̄21)

+D2F (0)(h20, h̄20) +D3F (0)(φ̄, φ̄, h20) +D3F (0)(φ, φ, h̄20)

+ 4D3F (0)(φ, φ̄, h11) +D4F (0)(φ, φ, φ̄, φ̄)],

(3.66)

but for h31 we need to be more careful. The linear system is

(2iω0I −A�?)h31 =
[
D2F (0)(φ̄, h30) + 3D2F (0)(φ, h21) + 3D2F (0)(h11, h20)

+3D3F (0)(φ, φ̄, h20) + 3D3F (0)(φ, φ, h11) +D4F (0)(φ, φ, φ, φ̄)
]
r�?

− 6c1h20,

so the right-hand side is of the form

[· · · ]r�? − 6c1h20 =

[
[· · · ]− 6c1h20(0)

0

]
+

[
0

−6c1h20

]
. (3.67)

By the linearity of the resolvent (2iω0I −A�?)−1 and the form of h20 in (3.60) Corollary 3.4
applies separately to each of the two summands in the right-hand side of (3.67). This leads
to

h31(θ) = e2iω0θ∆(2iω0)−1[D2F (0)(φ̄, h30) + 3D2F (0)(h20, h11) + 3D2F (0)(φ, h21)

+ 3D3F (0)(φ, φ̄, h20) + 3D3F (0)(φ, φ, h11) +D4F (0)(φ, φ, φ, φ̄)]

− 6c1∆(2iω0)−1[∆′(2iω0)− θ∆(2iω0)]h20(θ).

(3.68)

The linear system corresponding to the fifth-order term z3z̄2 involves c2 and is singular.
Applying the Fredholm Alternative yields the expression

c2 =
1

12
p
[
6D2F (0)(h11, h21) + 3D2F (0)(h̄21, h20) +D2F (0)(h̄20, h30)

+ 3D2F (0)(φ, h22) + 2D2F (0)(φ̄, h31) + 6D3F (0)(φ̄, h20, h11)

+ 6D3F (0)(φ, h11, h11) + 3D3F (0)(φ, h20, h̄20) + 6D3F (0)(φ, φ̄, h21)

+ 3D3F (0)(φ, φ, h̄21) +D3F (0)(φ̄, φ̄, h30) + 6D4F (0)(φ, φ, φ̄, h11)

+ 3D4F (0)(φ, φ̄, φ̄, h20) +D4F (0)(φ, φ, φ, h̄20) +D5F (0)(φ, φ, φ, φ̄, φ̄)
]
,

(3.69)

with all the appearing coefficients hjk derived above. From c2 we may calculate the second
Lyapunov coefficient as

l2(0) =
1

ω0
Re c2. (3.70)

3.5.4 Fold-Hopf

At this bifurcation the spectrum σ(A) contains a simple zero-eigenvalue λ1, a simple purely
imaginary pair λ2,3 = ±iω0 with ω0 > 0, and there are no other purely imaginary eigenvalues.
Let φ0, φ1, φ

�
0 and φ�1 be such that

Aφ0 = 0, Aφ1 = iω0φ1, A∗φ�0 = 0, A∗φ�1 = iω0φ
�
1
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Akin to (3.52) it is always possible to choose these vectors such that the ‘biorthogonality’
relation

〈φ�i , φj〉 = δij (i, j = 0, 1) (3.71)

is satisfied. Furthermore, let q0, q1, p0 and p1 be corresponding column- and row vectors, as in
Lemma 2.5. Any point y in the real three-dimensional center subspace X0 corresponding to
λ1,2,3 can be uniquely expressed with respect to the set {φ0, φ1, φ̄1} by means of the smooth
real-complex coordinate mapping2

y 7→ (z0, z1, z̄1), z0 = 〈φ�0 , y〉 and z1 = 〈φ�1 , y〉 (3.72)

with z = (z0, z1) ∈ R× C. The homological equation then becomes

A�?H(z, z̄) +R(H(z, z̄)) = Dz0H(z, z̄)ż0 +Dz1H(z, z̄)ż1 +Dz̄1H(z, z̄) ˙̄z1

with center manifold expansion given by

H(z0, z1, z̄1) = z0φ0 + z1φ1 + z̄1φ̄1 +
∑

2≤j+k+l≤3

1

j!k!l!
hjklz

j
0z
k
1 z̄

l
1 +O(‖(z0, z1, z̄1)‖4)

and with ż according to (3.47). In the expansion (3.43) of the non-linearity R we set N = 3
since we will be calculating up to and including third-order coefficients. Note that, for the
same reason as in the generalized Hopf case, one has hjlk = h̄jkl.

There are seven critical coefficients to be determined. The first three of them are found
by looking at terms zj0z

k
1 z̄

l
1 with j + k+ l = 2 in the homological equation. This leads to four

relevant systems, three of which are singular and correspond to resonant terms in the normal
form. Their solutions are:

h200(θ) = BINV
0 (D2F (0)(φ0, φ0),−p0D

2F (0)(φ0, φ0))(θ)

h020(θ) = e2iω0θ∆(2iω0)−1D2F (0)(φ1, φ1)

h110(θ) = BINV
iω0

(D2F (0)(φ0, φ1),−p1D
2F (0)(φ0, φ1))(θ)

h011(θ) = BINV
0 (D2F (0)(φ1, φ̄1),−p0D

2F (0)(φ1, φ̄1))(θ)

(3.73)

By the Fredholm Alternative the appearing bordered inverses exist, provided

G200 =
1

2
p0D

2F (0)(φ0, φ0) H110 = p1D
2F (0)(φ0, φ1)

G011 = p0D
2F (0)(φ1, φ̄1)

(3.74)

which fixes the quadratic normal form coefficients.
For the four remaining coefficients we once more apply the Fredholm Alternative to the

resonant zj0z
k
1 z̄

l
1 terms with j + k + l = 3. This leads to the expressions

G300 =
1

6
p0[3D2F (0)(φ0, h200) +D3F (0)(φ0, φ0, φ0)]

G111 = p0[D2F (0)(φ0, h011) +D2F (0)(φ̄1, h110) +D2F (0)(φ1, h̄110)

+D3F (0)(φ0, φ1, φ̄1)]

H210 =
1

2
p1[D2F (0)(φ1, h200) + 2D2F (0)(φ0, h110) +D3F (0)(φ0, φ0, φ1)]

H021 =
1

2
p1[D2F (0)(φ̄1, h020) + 2D2F (0)(φ1, h011) +D3F (0)(φ1, φ1, φ̄1)]

(3.75)

2Clearly, our notation is a bit sloppy, in the sense that the second pairing in the r.h.s. of (3.72) really is
the complexified counterpart of the first pairing. See Remark 2.2.
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for the cubic normal form coefficients, with the appearing hjkl derived above.

3.5.5 Double Hopf

At this bifurcation the spectrum σ(A) contains two pairs λ1,4 = ±iω1 and λ2,3 = ±iω2 of
purely imaginary eigenvalues. We assume that ω1 > ω2 > 0 and there are no other eigenvalues
on the imaginary axis. Additionally, we suppose that the non-resonance condition (3.49) is
satisfied. Let φ1,2 and φ�1,2 be eigenvectors of A and A∗,

Aφ1 = +iω1φ1, Aφ2 = +iω2φ2, A∗φ�1 = +iω1φ
�
1 , A∗φ�2 = +iω2φ

�
2

and let q1,2 and p1,2 be corresponding column- and row vectors, as in Lemma 2.5. It is always
possible to scale these vectors such that the ‘biorthogonality’ relation

〈φ�i , φj〉 = δij (1 ≤ i, j ≤ 2) (3.76)

is satisfied. Moreover, any point y in the real four-dimensional center subspace X0 can be
expressed uniquely with respect to the set {φ1, φ̄1, φ2, φ̄2} by means of the smooth complex
coordinate mapping

y 7→ (z1, z2, z̄1, z̄2), z1 = 〈φ�1 , y〉 and z2 = 〈φ�2 , y〉

where z = (z1, z2) is in C2. The homological equation presently reads

A�?H(z, z̄) +R(H(z, z̄)) = Dz1H(z, z̄)ż1 +Dz̄1H(z, z̄) ˙̄z1 +Dz2H(z, z̄)ż2 +Dz̄2H(z, z̄) ˙̄z2

with ż given by (3.50) and a center manifold expansion of the form

H(z1, z̄1, z2, z̄2) = z1φ1 + z̄1φ̄1 + z2φ2 + z̄2φ̄2

+
∑

2≤j+k+l+m≤5

1

j!k!l!m!
hjklmz

j
1z̄
k
1z

l
2z̄
m
2 +O(‖(z1, z̄1, z2, z̄2)‖6)

satisfying hkjml = h̄jklm, and with N = 5 in expansion (3.43) of the non-linearity R.

A total of ten critical coefficients needs to be determined. We start by collecting zj1z̄
k
1z

l
2z̄
m
2 -

terms with j+k+l+m = 2 in the homological equation. All relevant systems are non-singular
and their solutions are:

h1100(θ) = ∆(0)−1D2F (0)(φ1, φ̄1)

h2000(θ) = e2iω1θ∆(2iω1)−1D2F (0)(φ1, φ1)

h1010(θ) = ei(ω1+ω2)θ∆(i(ω1 + ω2))−1D2F (0)(φ1, φ2)

h1001(θ) = ei(ω1−ω2)θ∆(i(ω1 − ω2))−1D2F (0)(φ1, φ̄2)

h0020(θ) = e2iω2θ∆(2iω2)−1D2F (0)(φ2, φ2)

h0011(θ) = ∆(0)−1D2F (0)(φ2, φ̄2)

(3.77)

Note how the non-resonance condition is used to guarantee invertibility in the ordinary sense.
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Proceeding with cubic coefficients, we encounter a total of ten relevant systems. Six of
these can be solved by ordinary inversion:

h3000(θ) = e3iω1θ∆(3iω1)−1[3D2F (0)(h2000, φ1) +D3F (0)(φ1, φ1, φ1)]

h2010(θ) = ei(2ω1+ω2)θ∆(i(2ω1 + ω2))−1[2D2F (0)(h1010, φ1) +D2F (0)(h2000, φ2) +D3F (0)(φ1, φ1, φ2)]

h2001(θ) = ei(2ω1−ω2)θ∆(i(2ω1 − ω2))−1[2D2F (0)(h1001, φ1) +D2F (0)(h2000, φ̄2) +D3F (0)(φ1, φ1, φ̄2)]

h1020(θ) = ei(ω1+2ω2)θ∆(i(ω1 + 2ω2))−1[2D2F (0)(h1010, φ2) +D2F (0)(h0020, φ1) +D3F (0)(φ1, φ2, φ2)]

h1002(θ) = ei(ω1−2ω2)θ∆(i(ω1 − 2ω2))−1[2D2F (0)(h1001, φ̄2) +D2F (0)(h̄0020, φ1) +D3F (0)(φ1, φ̄2, φ̄2)]

h0030(θ) = e3iω2θ∆(3iω2)−1[3D2F (0)(h0020, φ2) +D3F (0)(φ2, φ2, φ2)]

The remaining four systems correspond to resonant terms in the normal form. Using the
Fredholm Alternative to ensure their solvability leads to the following expressions for the four
cubic critical normal form coefficients:

G2100 =
1

2
p1[2D2F (0)(h1100, φ1) +D2F (0)(h2000, φ̄1) +D3F (0)(φ1, φ1, φ̄1)]

G1011 = p1[D2F (0)(h0011, φ1) +D2F (0)(h1001, φ2) +D2F (0)(h1010, φ̄2)

+D3F (0)(φ1, φ2, φ̄2)]

H1110 = p2[D2F (0)(h̄1001, φ1) +D2F (0)(h1010, φ̄1) +D2F (0)(h1100, φ2)

+D3F (0)(φ1, φ̄1, φ2)]

H0021 =
1

2
p2[2D2F (0)(h0011, φ2) +D2F (0)(h0020, φ̄2) +D3F (0)(φ2, φ2, φ̄2)]

(3.78)

We refrain from listing the fifth order critical normal form coefficients here, since the ex-
pressions are lengthy and, as remarked in §3.4.2, the cubic coefficients suffice to distinguish
between ‘simple’ and ’difficult’ double Hopf points. In case higher order coefficients are de-
sired, we are confident that by now the reader is able to translate the expressions for the fifth
order coefficients given for the ODE case in [24] to the present setting.



Chapter 4

Examples

We work out two examples that illustrate the application of the formulas derived in §3.5. By
contrasting a relatively simple DDE with a more involved and numerically challenging exam-
ple, we hope to convince the reader that the results from the previous chapter are applicable
to normalization problems of a varying degree of computational complexity. Together with
the cusp example at the end of §3.3, the examples in this chapter exhaust Table 3.1.

Clearly, the evaluation of the formulas from §3.5 for the critical normal form coefficients
requires information about the higher order derivatives of the right-hand side of (DDE). In
§4.1 we briefly comment on the computation of such derivatives for the special case that the
DDE is of discrete type. All DDE that appear in this chapter belong to this subclass.

In §4.2 we obtain symbolic critical normal form coefficients for a Bogdanov-Takens bifur-
cation in a Van der Pol equation with delayed feedback. We explain how a discrete symmetry
in the system necessitates the calculation of not only quadratic but also cubic coefficients and
we compare our findings with literature results.

In §4.3 we investigate codimension-two points on the stability boundary of the rest state
of a neural mass model. We encounter double Hopf, fold-Hopf and Bautin (generalized Hopf)
points and compute their critical normal forms. Our findings are presented largely in the
form of a commented Maple worksheet. We hope that this example will serve as a sort
of computational prototype for the numerical normal form analysis of other systems. The
computations in this section are new.

4.1 Calculating symbolic derivatives for DDE of discrete type

In general it is not possible to provide a concrete recipe for the computation of higher order
derivatives of the right-hand side of (DDE), but in this section we will consider a special
case that is frequently encountered in the applied literature. For simplicity we restrict our
attention to an equilibrium at zero.

We say that (DDE) is of discrete type if there exist delays 0 = τ0 < τ1 < . . . < τm = h
for some m ∈ N and a function f : Rn×(m+1) → Rn such that

F (φ) = f(φ(−τ0), φ(−τ1), . . . , φ(−τm)), ∀φ ∈ X. (4.1)

Here Rn×(m+1) is the vector space of real matrices with n rows and m + 1 columns. Let
E : X → Rn×(m+1) be the bounded linear evaluation operator that evaluates elements of

43
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X in the points −τ0, . . . ,−τm,

Eφ :=

φ1(0) φ1(−τ1) · · · φ1(−τm)
...

...
...

φn(0) φn(−τ1) · · · φn(−τm)

 , ∀φ ∈ X.

In these terms,
F = f ◦ E. (4.2)

We regard first and higher order derivatives of F and f as linear and multilinear operators,
respectively. The Banach space of bounded r-linear operators between Banach spaces V and
W is denoted Lr(V,W ). It is a consequence of (4.2) that if f is r-fold differentiable for some
r ∈ N, then F is also r-fold differentiable and

DrF (0)(ψ1, . . . , ψr) =

n∑
j1,...,jr=1

m∑
k1,...,kr=0

Dr
j1k1,...,jrkrf(0)Ψ1,j1k1 · · ·Ψr,jrkr (4.3)

for all ψ1, . . . , ψr ∈ X, where for any ψ ∈ X we write Ψ := Eψ. Here Dr
j1k1,...,jrkr

f(0) is
the rth order derivative of f at zero with respect to the entries at positions j1k1, . . . , jrkr of
its matrix argument in Rn×(m+1). In particular, for the case r = 1 we obtain the following
well-known expression for the characteristic matrix.

Lemma 4.1. For a DDE of discrete type the characteristic matrix is given by

∆(z) = zIn −
m∑
k=0

e−zτkDkf(0) (4.4)

where Dkf(0) ∈ Rn×n is the partial derivative of f with respect to the kth column of its matrix
argument, evaluated at zero.

Proof. For r = 1 (4.3) gives, for any ψ ∈ X with Ψ := Eψ,

DF (0)ψ =

n∑
j=1

m∑
k=0

Djkf(0)Ψjk =

m∑
k=0

n∑
j=1

Djkf(0)ψj(−τk) =

m∑
k=0

Dkf(0)ψ(−τk).

In the last equality it was used that the partial derivative of f with respect to its kth column
argument is the n× n matrix

Dkf(0) =
[
D1kf(0) D2kf(0) · · · Dnkf(0)

]
.

Hence the unique function η ∈ NBV([0, h],Rn×n) satisfying (2.14) is constant separately on
each of the intervals (τ0, τ1), [τ1, τ2), . . ., [τm−1, τm) while it jumps by the amounts Dkf(0) at
the delays τk. Substituting η into (2.16) gives the expression for ∆(z).

4.2 Bogdanov-Takens bifurcation in a Van der Pol oscillator

We consider the equation

ẍ(t) + ε(x2(t)− 1)ẋ(t) + x(t) = εg(x(t− τ)), (4.5)
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where ε > 0 is a parameter, τ > 0 is a delay parameter and g : R → R is a smooth function
with g(0) = 0. In one interpretation (4.5) is the equation of motion of a unit point mass
subject to nonlinear damping and delayed feedback. If g = 0 identically then we recover
the well-known (unforced) Van der Pol equation, see for example [18, §2.1]. This system is
representative for the class of Liénard systems, capable of self-sustained nonlinear oscillations.

There appears to be a more recent interest in the delayed case, when g in (4.5) does
not vanish identically. In [40] the analysis is restricted to linear delayed feedback. The
authors identify a sequence of delay values for which the trivial equilibrium undergoes Hopf
bifurcations. The direction of bifurcation is computed using the method of [20]. The follow-
up study [22] with nonlinear delayed feedback presents a normal form analysis of a possibly
denegerate Bogdanov-Takens bifurcation of the origin, using the method from [16] that was
already mentioned in §1.2.

In this first example we test the results from §3.5.2 by calculating a critical normal form
for a Bogdanov-Takens bifurcation occurring in (4.5) with general g. We are interested in
comparing our results with those found in [22], both in the non-degenerate and the degenerate
case.

4.2.1 Linearization at the trivial equilibrium

We start by rewriting (4.5) as the first order system{
ẋ1(t) = τx2(t),

ẋ2(t) = τ(−x1(t)− ε(x2
1(t)− 1)x2(t) + εg(x1(t− 1))),

(4.6)

where we have non-dimensionalized time as t → t
τ . As a consequence the delay τ is now an

ordinary parameter and the state space X = C([−1, 0],R2) is parameter-independent. From
(4.6) we see that the function f : R2×2 → R2 appearing in (4.1) with n = 2 and m = 1 is
given by

f(φ(0), φ(−1)) = τ

[
φ2(0)

−φ1(0)− ε(φ2
1(0)− 1)φ2(0) + εg(φ1(−1))

]
. (4.7)

The condition g(0) = 0 implies that the origin is a trivial equilibrium of (4.6). Using Lemma
4.1 we calculate the characteristic matrix,

∆(z) =

[
z −τ

τ(1− εαe−z) z − τε

]
, α := g′(0),

so the characteristic exponential polynomial is

det ∆(z) = z2 − ετz + τ2 − ετ2αe−z. (4.8)

The roots of this equation determine the local stability and bifurcation of the trivial equilib-
rium under parameter variations. Since τ > 0, we can write the characteristic equation in
terms of w := z

τ as
w2 − εw + 1− εαe−wτ = 0. (4.9)

There is a one-to-one correspondence between the roots of (4.8) and the solutions of (4.9).
Specifically, w is a solution of (4.9) in the left half plane (right half plane, imaginary axis) if
and only if z = τw is a root of (4.8) in the left half plane (right half plane, imaginary axis).
The multiplicities of z and w are clearly the same.
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Remark 4.2. Had we not performed a time rescaling in passing from (4.5) to (4.6), then we
would have directly found (4.9) as the characteristic equation. So, although we did perform the
time rescaling to be in accordance with [22], as far as the characteristic equation is concerned
it is a bit more convenient to work with (4.9) instead of (4.8) because the parameter τ appears
only inside the exponential. One just has to correct nonzero eigenvalues with a factor τ or
τ−1 when passing from one to the other. ♦

We regard α and τ as control parameters. For α = ε−1 (4.9) has a zero root for all values
of τ > 0 and no other roots on the imaginary axis. Expand (4.9) around w = 0 as

w2 − εw + 1− εαe−wτ = 1− εα+ ε(ατ − 1)w +
1

2
(2− εατ2)w2 +

1

6
εατ3w3 +O(w4).

By inspection of the coefficients in this expansion, we see that w = 0 is

• an algebraically simple eigenvalue if α = ε−1 and τ 6= ε,

• a double eigenvalue if α = ε−1 and τ = ε with ε 6=
√

2,

• a triple eigenvalue if α = ε−1 and τ = ε with ε =
√

2.

Here we are interested in the second case, so from now on we assume that

0 < ε <
√

2. (4.10)

In this case all roots of (4.9) except w = 0 are strictly in the left half-plane [40]. For the critical
parameter values (α, τ) = (ε−1, ε) the equilibrium satisfies the Bogdanov-Takens bifurcation
condition. A quadratic critical normal form is given by (3.44), provided the non-degeneracy
conditions a2 6= 0 and b2 6= 0 are met. However, if one of the quadratic coefficients vanishes -
for example, because of symmetry - then the bifurcation is degenerate and the critical normal
form must be augmented with cubic terms as in (3.45). So, in order to investigate a possible
degeneracy we calculate a2 and b2.

4.2.2 Calculation of normalized (generalized) eigenvectors

From (3.55)–(3.58) we see that we need (generalized) eigenvectors φ0 and φ1, but we only
require a left Jordan chain of ∆ at zero and not the full (generalized) eigenvectors of Lemma
2.7.

Lemma 4.3. Let column vectors q0 and q1 and row vectors p1 and p0 be given by

q0 =

[
1
0

]
, q1 =

[
0
ε−1

]
, p1 =

[
−ε 1

]
, p0 =

[
ε−1 0

]
.

Then {q0, q1} is a right Jordan chain of rank two for ∆ at zero and the functions φ0 and φ1

given by

φ0(θ) = q0, φ1(θ) = θq0 + q1, ∀ θ ∈ [−1, 0], (4.11)

are an eigenvector and a generalized eigenvector of A corresponding to its zero eigenvalue.
Similarly, {p1, p0} is a left Jordan chain of rank two for ∆ at zero.
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Proof. According to Definition 2.6 we have to choose c, d ∈ R such that

∆(z)(q0 + zq1) =

[
(1− dε)z + cz2

ε(1− z
2)z + εcz2 − d(ε2 − z)z

]
= O(z2)

as z → 0. Taking into account (4.10) we see that c = 0 and d = ε−1 are as required. The
(generalized) eigenfunctions are then obtained from Lemma 2.7. Likewise the row vector
p1 = [−ε, 1]T spans the nullspace of ∆(0)T . Writing p0 = [c, d]T for c and d to be determined,
we see that

(p1 + zp0)∆(z) =
[
(c− 1

2ε+ εd)z2 (1− εc− ε2d)z + dz2
]

up to and including O(z2). If d = 0 and c = ε−1 then this expression is O(z2).

It remains to make sure that the normalization condition (3.52) is satisfied. Either from
Proposition 2.9 or - for this simple example - by inspection, we see that the vectors

q̃0 =

[
1
0

]
, q̃1 =

1

3

[
−ε2(2− ε2)−1

3ε−1

]
, (4.12)

and

p̃1 =
2ε

2− ε2

[
−ε 1

]
, p̃0 =

2

2− ε2

[
1 0

]
(4.13)

are such that (3.52) holds.

4.2.3 Quadratic critical normal form coefficients

Now we are ready to substitute the previously computed ingredients into (3.55) and (3.56).
We compute the second derivative of the right-hand side of (DDE) at zero by using (4.3)
together with (4.7). We find

D2F (0)(ψ1, ψ2) = ε2β

[
0

ψ1,1(−1)ψ2,1(−1)

]
, ∀ψ1, ψ2 ∈ X, (4.14)

where β := g′′(0).

Remark 4.4. In this simple case it is not a problem to compute (4.14) by hand. However,
as the degree of the derivative or the dimensions n and m increase, it may be better to use
a computer algebra system. For example, with the DelayTools package installed and loaded
into Maple, it is sufficient to enter

> E := rcurry(DDE[eval_at_delays], [0, 1]);

> DDE[diff](f, E, 2, [psi[1], psi[2]]);

Here it is assumed that f is available as a Vector-valued function (not an expression) corre-
sponding to (4.7) and psi is a list of two Vector-valued functions that correspond to the
arguments of the bilinear form (4.14). For instance, these may be the (generalized) eigen-
functions from §4.2.2. Of course the foregoing also applies to the third order derivative (4.17)
in §4.2.4 below. ♦
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Using (4.14) together with (4.11)–(4.13) we evaluate a2 and b2 from (3.55) and (3.56) as

a2 =
ε3β

2− ε2
, b2 = −4ε3(3− ε2)β

3(2− ε2)2
(4.15)

and we conclude that these expressions are identical to those found in [22] using a more
elaborate method. We make the following observations regarding (4.15).

1. Suppose that g is an odd function. Then (4.6) has a Z2-symmetry: It is invariant under
the substitution x→ −x. Since a smooth odd function has a vanishing second derivative
at the origin, it follows that β = 0, so a2 = b2 = 0 and the bifurcation is degenerate.
Instead of (3.44) the cubic critical normal form (3.45) should be used.

2. If ε =
√

3 then b2 vanishes while a2 may or may not vanish depending on whether or
not β vanishes. As above it is then necessary to proceed with a calculation of the cubic
normal form.

3. If ε =
√

2 then (4.10) is violated and a2 and b2 either both diverge (when β 6= 0) or
are both indeterminate (when β = 0). We recall from §4.2.1 that in this case λ = 0
degenerates from a double to a triple eigenvalue.

In the last section of this example we will discuss the first case.

4.2.4 Degeneracy and cubic critical normal form coefficients

Let us assume that (4.10) holds and that β = 0. It then follows from (4.14) and (4.15) that

D2F (0) = 0, a2 = 0, b2 = 0, (4.16)

and calculation of the cubic coefficients a3 and b3 in (3.45) becomes necessary. The third
order derivative of the right-hand at zero is computed to be

D3F1(0)(ψ1, ψ2, ψ3) = 0,

D3F2(0)(ψ1, ψ2, ψ3) = −2ε2(ψ1,2(0)ψ2,1(0)ψ3,1(0) + ψ1,1(0)ψ2,2(0)ψ3,1(0)

+ ψ1,1(0)ψ2,1(0)ψ3,2(0)− 1

2
γψ1,1(−1)ψ2,1(−1)ψ3,1(−1)),

(4.17)

for all ψ1, ψ2 and ψ3 in X and with γ := g(3)(0). The expressions for the cubic coefficients in
(3.57) and (3.58) simplify considerably when (4.16) is taken into account. Indeed, for a3 we
find

a3 =
1

6
p1 ·D3F (0)(φ0, φ0, φ0) =

ε3γ

3(2− ε2)
, (4.18)

where (4.11)–(4.13) and (4.17) were used in the second equality. Likewise, for b3 we obtain

b3 =
1

2
p1 ·D3F (0)(φ0, φ0, φ1) +

1

2
p0 ·D3F (0)(φ0, φ0, φ0),

= − 2ε2

2− ε2

(
1 +

ε(3− ε2)γ

3(2− ε2)

)
.

(4.19)

These expressions for a3 and b3 are identical to those reported in [22].
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4.3 Codimension-two Hopf bifurcations in a neural mass model

The calculations in the previous section were of a symbolic nature and could be carried out by
hand without too much difficulty. In contrast, in this section we will discuss an example that
requires a numerical approach. All calculations were performed in Maple 13 using standard
double precision. Self-contained parts of the Maple worksheet have been reproduced below.
Since the code is quite elementary, we hope that it is clear how to adapt it to other platforms.
The worksheet used to perform all computations in the following subsections can be obtained
by email from the author.

4.3.1 Model introduction

In [38] the following non-dimensionalized model of two interacting layers of neurons was
considered: {

ẋ1(t) = −x1(t)− ag(bx1(t− τ1)) + cg(dx2(t− τ2))

ẋ2(t) = −x2(t)− ag(bx2(t− τ1)) + cg(dx1(t− τ2))
(4.20)

We will not address modelling questions here, but only give a brief summary. The variables
x1(t) and x2(t) represent the population-averaged neural activity at time t in layers one and
two, respectively. The parameter a > 0 is a measure of the strength of inhibitory feedback,
while c > 0 measures the strength of the excitatory effect of one layer on the other. The
parameters b > 0 and d > 0 are saturation rates and the delays τ1,2 > 0 represent time lags
in the inhibitory feedback loop and excitatory inter-layer connection. Finally, the function
g : R→ R is of the sigmoidal form

g(z) := [tanh(z − 1) + tanh(1)] cosh2(1) (z ∈ R) (4.21)

In fact, the detailed form of g is not relevant to the subsequent calculations. Only the values
of g and its first five derivatives at zero enter the calculations. In accordance with [38] we fix
the numerical values

b = 2.0, d = 1.2, τ1 = 12.7, τ2 = 20.2 (4.22)

We consider the feedback strengths a and c as free control parameters.

Analysis of (4.20) by the authors of [38] is still in progress. I am happy that they nonethe-
less allowed me to use their model as a test case for the normalization techniques described
in this manuscript.

4.3.2 Linearization and the characteristic equation

It is apparent from (4.20) and (4.21) that the origin (x1, x2) = (0, 0) is an equilibrium for
all possible parameter values. Since the system is symmetric with respect to the interchange
of the labels of layers one and two, equilibria are always of the form (x1, x2) = (x∗, x∗) for
some x∗ ∈ R. Clearly, only the case x∗ ≥ 0 is physically relevant. In total, the number of
simultaneously present equilibria lies between one and three and they are found as solutions
of the transcendental equation

x∗ + ag(bx∗)− cg(dx∗) = 0 (4.23)
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Note that this equation (and henceforth the location of equilibria) does not depend on the
values of the delays τ1 and τ2. In Figure 4.1 a specific one-parameter bifurcation diagram is
presented. Obviously this diagram is not exhaustive, but it serves to give an impression of
the behaviour of solutions of (4.23).

Linearizing (4.20) around an equilibrium (x∗, x∗) yields the system{
ẋ1(t) = −x1(t)− k1x1(t− τ1) + k2x2(t− τ2)

ẋ2(t) = −x2(t)− k1x2(t− τ1) + k2x1(t− τ2)
(4.24)

where
k1 := abg′(bx∗), k2 := cdg′(dx∗) (4.25)

Introducing x := (x0, x1) we can write (4.24) in the form

ẋ(t) = −
[
1 0
0 1

]
x(t)− k1

[
1 0
0 1

]
x(t− τ1) + k2

[
0 1
1 0

]
x(t− τ2) (4.26)

From here on we will focus exclusively on the trivial equilibrium (x∗, x∗) = (0, 0). This
equilibrium corresponds to a quiescent state in which both neural layers are at rest. Following
[38] we will analyze the linearization in terms of k1 and k2, noting from (4.25) that

a =
k1

bg′(0)
, c =

k2

dg′(0)
(4.27)

so there is a one-to-one correspondence between critical values of the control parameters a
and c on the one hand and k1,2 on the other hand. Since we have no desire to treat one of
the delays τ1,2 as a bifurcation parameter, there is no need to perform a scaling by the delay
time as in §4.2. Setting h := max(τ1, τ2) > 0 we observe that corresponding to (4.26) there
exists a unique kernel ηk1,k2 ∈ NBV([0, h],R2) such that

ẋ(t) =

∫ h

0
dηk1,k2(θ)xt(−θ)

From (4.26) we see that ηk1,k2 is given by

ηk1,k2(θ) = −
[
1 0
0 1

]
1(0,∞)(θ)− k1

[
1 0
0 1

]
1[τ1,∞)(θ) + k2

[
0 1
1 0

]
1[τ2,∞)(θ) (4.28)

for θ ∈ R. Hence the characteristic matrix is

∆k1,k2(λ) =

[
λ+ 1 + k1e

−λτ1 −k2e
−λτ2

−k2e
−λτ2 λ+ 1 + k1e

−λτ1

]
(4.29)

the determinant of which leads to the characteristic equation

∆+
k1,k2

(λ)∆−k1,k2(λ) = 0 (4.30)

with
∆±k1,k2 := 1 + λ+ k1e

−λτ1 ± k2e
−λτ2

As was shown in [38] and can easily be checked by the reader, fold bifurcations occur on the
curves in the (k1, k2)-plane defined by the equations

1 + k1 + k2 = 0, 1 + k1 − k2 = 0 (4.31)
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(a) c = 15
29

(b) c = 18
29

(c) c = 20
29

(d) c = 40
29

Figure 4.1: The graph of the left-hand side of (4.23) as a function of x∗ for a = 2
29 , b and d as

in (4.22) and values of the parameter c as indicated. The origin is always an equilibrium. In (a)
it is the only equilibrium present, but in (b) it coexists with two non-zero equilibria that were
born in a saddle-node bifurcation occurring for some c ∈ ( 15

29 ,
18
29 ). In (c) this situation persists

qualitatively, but in (d) a transcritical bifurcation has lead to an exchange of stability between
the trivial equilibrium and the left-most member of the saddle-node pair.
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while Hopf bifurcations from an eigenvalue iω occur on the curves parametrized by ω as[
k1

k2

]
=

1

sin (ω(τ2 − τ1))

[
sinωτ2 − cosωτ2

− sinωτ1 cosωτ1

] [
−1
ω

]
(ω > 0) (4.32)

and [
k1

k2

]
=

1

sin (ω(τ2 − τ1))

[
sinωτ2 − cosωτ2

sinωτ1 − cosωτ1

] [
−1
ω

]
(ω > 0) (4.33)

with singularities for

ω =
mπ

τ2 − τ1
=: ωs(m) (m ∈ N) (4.34)

It will come as no surprise that analytic results are difficult to obtain for the characteristic
equation (4.30). Some observations can however be made. In [38] it was shown that the origin
is a locally stable equilibrium of (4.20) for (k1, k2) strictly contained in the circle of radius
1
2

√
2 centered at the origin in the (k1, k2) parameter plane.

In Figure 4.2 we depict and discuss the structure of the fold and Hopf bifurcation curves
in the (k1, k2)-plane near the origin. It is seen that the quiescent (zero) equilibrium typically
looses its stability in an Andronov-Hopf bifurcation, but additionally various codimension-two
points exist. In §4.3.4 we will compute the direction of Hopf bifurcation and give a precise
account of all the relevant codimension-two points that exist in Figure 4.2.

In order to do this, we need some preparations. In the following subsection we take a
break and divert from the main course of argument by explaining how the bookkeeping of
higher-order derivatives of the system (4.20) may be done in a clear, efficient manner.

4.3.3 System specification in Maple

The computations that follow are conveniently performed in a computer algebra system such
as Maple, capable of both symbolic as well as numerical calculations. To present our results,
we proceed as follows. In the present subsection we propose an ‘initialization’ of the system
(4.20), its fixed parameters and derivatives. The reader who is interested in checking our
computations should enter this code into an empty Maple worksheet. In the later subsections
we will add bits of code to this worksheet to perform various normal form computations.

From here on, we adopt the convention that variables written in verbatim font corre-
spond to Maple variables. So, if we write q or lambda we refer to Maple variables and these
correspond to the ‘ordinary’ variables q and λ in the main text. We start with

> restart;

> with(LinearAlgebra):

> Digits:=15;

> interface(showassumed=0);

> assume(theta,’real’);

Then we define system parameters. The parameters n and r are the dimension of the system
(??) and the number of delays. The other parameters are as in (4.22). Note that tau[0] is
the ‘zero-delay’ appearing in (??).

> n:=2; r:=2; (*)

> b:=2; d:=1.2; tau[0]:=0.0; tau[1]:=12.7; tau[2]:=20.2;
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k1

k2

Figure 4.2: The (k1, k2)-parameter plane near the origin for parameter values as in (4.22). Shown
in black and red are curves of Hopf bifurcation, parametrized by (4.32) and (4.33), respectively.
The straight blue lines correspond to the fold curves (4.31). The curve parameter ω was varied in
the interval [0, ωs(1)] with ωs(1) as in (4.34). For values ω > ωs(1) the plane becomes gradually
filled with Hopf curves, but the stable region surrounding the origin remains unaltered. As can
be seen from the curve parametrizations, the fold curves do not depend on any fixed system
parameters (excluding the free parameters k1 and k2) while the Hopf curves depend only on τ1
and τ2. We note a symmetry between the upper and lower half-plane and remark that only the
positive quadrant is physically relevant, although in general bifurcation points sufficiently close
to the quadrant’s boundary may still be ‘felt’ in the quadrant’s interior. However, such points do
not exist in the above figure. For example, the Bogdanov-Takens point at the crossing of the two
blue lines lies too far in the negative half-plane to warrant analysis.
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These parameters are global in the worksheet. They are read (but not altered) by the various
procedures that follow. Next, we code the function g from (4.21) and its derivatives (up to
and including order three for double Hopf and fold-Hopf points and up to and including order
five for Bautin points) at zero.

> g:=z->(tanh(z-1.0)+tanh(1.0))*cosh(1.0)^2;

> dg:=D(g)(0);

> d2g:=(D@@2)(g)(0);

> d3g:=(D@@3)(g)(0);

> d4g:=(D@@4)(g)(0);

> d5g:=(D@@5)(g)(0);

We also provide the characteristic matrix as a function of λ, as well as its first two derivatives.
(The second derivative is not needed in the present subsection, but it will be required in §4.3.6
below.)

> Delta:=lambda->

> Matrix([[lambda+1+k1*exp(-lambda*tau[1]),-k2*exp(-lambda*tau[2])],

> [-k2*exp(-lambda*tau[2]),lambda+1+k1*exp(-lambda*tau[1])]]);

> DDelta:=lambda->eval(map(diff,Delta(z),z),z=lambda);

> D2Delta:=lambda->eval(map(diff,DDelta(z),z),z=lambda);

Moreover, we provide procedures D2F and D3F that take as input two or three expressions
(not functions) in Rn depending on a variable theta and output the second or third Fréchet-
derivative of the right-hand side of (4.20) at zero, evaluated at the input expression(s). For
these procedures we use the results (??) and (??) found in the previous subsection. The con-
version of input expressions into arrays (see the remark at the end of §4.1) is done internally.
For D2F we have

> D2F:=proc(phi,psi)

> local PHI,PSI,i,j;

> global a,b,c,d,n,r,g,tau;

>

> PHI:=Array(1..n,0..r);

> PSI:=Array(1..n,0..r);

>

> for i from 1 to n do

> for j from 0 to r do

> PHI[i,j]:=eval(phi[i],theta=-tau[j]);

> PSI[i,j]:=eval(psi[i],theta=-tau[j]);

> end do;

> end do;

>

> return(<-a*d2g*b^2*PHI[1,1]*PSI[1,1]+c*d2g*d^2*PHI[2,2]*PSI[2,2],

> -a*d2g*b^2*PHI[2,1]*PSI[2,1]+c*d2g*d^2*PHI[1,2]*PSI[1,2]>)

>

> end:

while for D3F we have
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> D3F:=proc(phi,psi,chi)

> local PHI,PSI,CHI,i,j;

> global a,b,c,d,n,r,g,tau;

>

> PHI:=Array(1..n,0..r);

> PSI:=Array(1..n,0..r);

> CHI:=Array(1..n,0..r);

>

> for i from 1 to n do

> for j from 0 to r do

> PHI[i,j]:=eval(phi[i],theta=-tau[j]);

> PSI[i,j]:=eval(psi[i],theta=-tau[j]);

> CHI[i,j]:=eval(chi[i],theta=-tau[j]);

> end do;

> end do;

>

> return(<-a*d3g*b^3*PHI[1,1]*PSI[1,1]*CHI[1,1]

> +c*d3g*d^3*PHI[2,2]*PSI[2,2]*CHI[2,2],

> -a*d3g*b^3*PHI[2,1]*PSI[2,1]*CHI[2,1]

> +c*d3g*d^3*PHI[1,2]*PSI[1,2]*CHI[1,2]>)

>

> end:

This suffices for double Hopf and fold-Hopf points. In §4.3.7 we will compute the second
Lyapunov coefficient (a fifth order coefficient) for a Bautin point that we shall encounter in
§4.3.4. For this we also need to provide Maple procedures for fourth and fifth order Fréchet-
derivatives of the right-hand side of (4.20). These were not computed in §4.1 to avoid tedious
repetitions, but we believe that their form is easily deduced from the pattern provided by
(??) and (??). For D4F we define

> D4F:=proc(phi,psi,chi,zeta)

> local PHI,PSI,CHI,ZETA,i,j;

> global a,b,c,d,n,r,g,tau;

>

> PHI:=Array(1..n,0..r);

> PSI:=Array(1..n,0..r);

> CHI:=Array(1..n,0..r);

> ZETA:=Array(1..n,0..r);

>

> for i from 1 to n do

> for j from 0 to r do

> PHI[i,j]:=eval(phi[i],theta=-tau[j]);

> PSI[i,j]:=eval(psi[i],theta=-tau[j]);

> CHI[i,j]:=eval(chi[i],theta=-tau[j]);

> ZETA[i,j]:=eval(zeta[i],theta=-tau[j]);

> end do;

> end do;

>
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> return(<-a*d4g*b^4*PHI[1,1]*PSI[1,1]*CHI[1,1]*ZETA[1,1]

> +c*d4g*d^4*PHI[2,2]*PSI[2,2]*CHI[2,2]*ZETA[2,2],

> -a*d4g*b^4*PHI[2,1]*PSI[2,1]*CHI[2,1]*ZETA[2,1]

> +c*d4g*d^4*PHI[1,2]*PSI[1,2]*CHI[1,2]*ZETA[1,2]>)

>

> end:

and, finally, for D5F we have

> D5F:=proc(phi,psi,chi,zeta,eta)

> local PHI,PSI,CHI,ZETA,ETA,i,j;

> global a,b,c,d,n,r,g,tau;

>

> PHI:=Array(1..n,0..r);

> PSI:=Array(1..n,0..r);

> CHI:=Array(1..n,0..r);

> ZETA:=Array(1..n,0..r);

> ETA:=Array(1..n,0..r);

>

> for i from 1 to n do

> for j from 0 to r do

> PHI[i,j]:=eval(phi[i],theta=-tau[j]);

> PSI[i,j]:=eval(psi[i],theta=-tau[j]);

> CHI[i,j]:=eval(chi[i],theta=-tau[j]);

> ZETA[i,j]:=eval(zeta[i],theta=-tau[j]);

> ETA[i,j]:=eval(eta[i],theta=-tau[j]);

> end do;

> end do;

>

> return(<-a*d5g*b^5*PHI[1,1]*PSI[1,1]*CHI[1,1]*ZETA[1,1]*ETA[1,1]

> +c*d5g*d^5*PHI[2,2]*PSI[2,2]*CHI[2,2]*ZETA[2,2]*ETA[2,2],

> -a*d5g*b^5*PHI[2,1]*PSI[2,1]*CHI[2,1]*ZETA[2,1]*ETA[2,1]

> +c*d5g*d^5*PHI[1,2]*PSI[1,2]*CHI[1,2]*ZETA[1,2]*ETA[1,2]>)

>

> end:

This concludes the initialization part of the worksheet. In all our subsequent Maple compu-
tations we will assume that these definitions have been executed in the active Maple session.

4.3.4 Identification of codimension-two points

We now return to Figure 4.2. Various codimension-two points reveal their presence as points
of intersection of the black, red and blue lines. Furthermore, the direction of bifurcation along
the Hopf curves may change at a Bautin bifurcation.

It is natural to start our computations by calculating this direction of bifurcation, i.e. cal-
culating the first Lyapunov coefficient along the black and red curves in the positive quadrant
of the (k1, k2)-plane. Using the Maple definitions provided in §4.3.3 this is not very difficult.
Suppose that L is a vector that parametrizes the black curve in Figure 4.2. Let omega0 be
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an admissible frequency. We are interested in computing the direction of bifurcation at the
point

> k1:=eval(L[1],omega=omega0);

> k2:=eval(L[2],omega=omega0);

in the (k1, k2)-plane. Using (4.27) we set the system control parameters and the critical
eigenvalue accordingly:

> a:=k1/(b*dg); c:=k2/(d*dg);

> lambda0:=I*omega0;

It is easily checked that the vectors q := (1,−1) and p := (1,−1)T satisfy ∆(λ0)q = 0 and
p∆(λ0) = 0, independently of omega0. Using Lemma 2.5 to satisfy the ‘biorthogonality’
condition (3.59) we normalize these vectors as

> q:=<1,-1>; p:=Transpose(<1,-1>);

> alpha:=1/sqrt(p.DDelta(lambda0).q);

> q:=alpha*q; p:=alpha*p;

Next, we define the eigenfunction φ corresponding to the eigenvector q, as well as its complex
conjugate.

> phi:=exp(lambda0*theta)*q;

> phibar:=map(conjugate,phi);

Everything is ready to compute the quantity in (3.63) and, from that and (3.65), the first
Lyapunov coefficient l1.

> h:=Array(0..2,0..2);

> h[2,0]:=exp(2*lambda*theta)*MatrixInverse(Delta(2*lambda)).D2F(phi,phi);

> h[1,1]:=MatrixInverse(Delta(0)).D2F(phi,phibar);

> c1:=(1/2)*p.(D2F(phibar,h[2,0])+2*D2F(phi,h[1,1])+D3F(phi,phi,phibar));

> l1:=(1/omega0)*Re(c1);

This is all there is to calculating the direction of Hopf bifurcation along the black curve in
Figure 4.2. A similar procedure can be followed to compute the direction along the red curve.
We have wrapped the above code in a Maple procedure (not reproduced here, but available
by email) to graph the plot in Figure 4.3.

We are now in a position to identify the codimension-two points in the positive quadrant
in Figure 4.2, also see Figure 4.4. Solving numerically for the two Bautin (generalized Hopf)
points yields

(kc1, k
c
2) = (0.503730243249497, 0.697442362012240)

ω0 = 0.275909434388554
(GH1)

for the point on the red curve, and

(kc1, k
c
2) = (0.513230584432908, 0.745286219214126)

ω0 = 0.172217243841191
(GH2)

for the point on the black curve.
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`1

ω0

Figure 4.3: The first Lyapunov coefficient computed along the portions of the black and red
curves that lie in right-half plane in Figure 4.2. Fixed parameter values are as in (4.22). Both
graphs cross the horizontal axis, each once. Thus there exist two Bautin-points, one on each curve.
In fact, the Lyapunov coefficient along the black curve diverges near the start of the ω0-interval
and becomes negative left of the singularity. (This is not visible in the plot.) Likewise, l1 diverges
along the red curve near the end of this interval and becomes negative right of the singularity.
The points of divergence coincide with points of fold-Hopf bifurcation, as explained in the main
text.
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k1

k2

GH1

GH2

1 : 1

ZH1

ZH2

HH

(a)

k2

k1

ZH1

ZH2

(b)

Figure 4.4: In 4.4(a) we see the positive quadrant of Figure 4.2 to which we added the data
computed in §4.3.4. Fixed parameter values are as in (4.22). A dashed line corresponds to a
subcritical Andronov-Hopf bifurcation, while a solid line indicates a supercritical direction. The
labels for the codimension-two points are chosen for consistency with standard MATCONT notation.
ZH = zero-Hopf (fold-Hopf) HH = Hopf-Hopf (double Hopf) GH = generalized Hopf. 4.4(b) is
a magnification of the upper left portion of 4.4(a). Note that at the fold-Hopf points ZH1 and
ZH2 the direction of Hopf bifurcation changes. At these points the first Lyapunov coefficient does
not vanish, but rather it diverges, as was already noted in the caption of Figure 4.3.
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The 1 : 1-resonance occurs at

(kc1, k
c
2) = (1.02601931196937, 0.0)

(ω1, ω2) = (0.229598842623607, 0.229598842623607)
(1:1)

and the characteristic matrix ∆k1,k2(λ) from (4.29) reduces to the zero-matrix at λ = iω1 =
iω2. Therefore the resonance is semisimple in the sense that the characteristic matrix pos-
sesses two independent null-vectors. This situation requires special treatment for which §3.5
lacks results. (Compare this to the remark made at the bottom of p.424 in [25] in conjunction
with a 1 : 1 resonance for maps.)

Instead, we choose to focus on the more ‘standard’ fold-Hopf and double Hopf points in
Figure 4.2. The double Hopf point occurs at

(kc1, k
c
2) = (0.180751807497717, 0.927849704599635)

(ω1, ω2) = (0.289979003927627, 0.156040086681052)
(HH)

The non-resonance condition (3.49) is satisfied,

n1ω1 6= n2ω2 for all n1, n2 ∈ N with n1 + n2 ≤ 5

For (n1, n2) = (1, 2) we have

n1ω1 − n2ω2 = 0.022101169434477

and this (n1, n2)-pair minimizes the absolute value of the difference of the left-hand and
right-hand sides of (4.3.4) over all relevant combinations of n1 and n2.

The third codimension-two point present in the positive quadrant is the fold-Hopf point.
Its coordinates are

(kc1, k
c
2) = (0.00760034373723105, 1.00760034373723)

ω0 = 0.148557497656540
(ZH1)

In this example we will compute the critical normal forms of the points DH, FH1 and GH1,
since these are the codimension-two points that lie on the stability boundary of the origin in
the positive quadrant of the (k1, k2)-plane. The points labeled FH2 and GH2 do no lie on this
boundary and therefore we will not compute their critical normal forms. (We are however
confident that the interested reader can do this himself after learning about the computations
below.)

4.3.5 The double Hopf point

In this subsection we will show that for the critical parameter values

ac =
kc1

bg′(0)
= 0.0903759037488591, cc =

kc2
dg′(0)

= 0.773208087166367 (4.35)

with (kc1, k
c
2) as in (HH) and all other parameters as in (4.22), the equilibrium (0, 0) of (4.20)

exhibits a ‘simple’ non-degenerate double Hopf bifurcation. (Here ‘simple’ refers to the pos-
itive sign of the product appearing in (??). We will return to this point below.) Using the
definitions and procedures from §4.3.3 we process data specific to the double Hopf point to
calculate the third-order critical normal form coefficients.

First we set the critical parameters and eigenvalues.
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> k1:=0.180751807497717; k2:=0.927849704599635; (**)

> a:=k1/(b*dg); c:=k2/(d*dg);

> omega1:=0.289979003927627; omega2:=0.156040086681052;

> lambda1:=I*omega1; lambda2:=I*omega2;

We proceed by computing the critical eigenvectors. Let ∆(λ1,2) be the characteristic matrices
from (4.29) evaluated at the critical eigenvalues λ1,2 = iω1,2. The column- and row vectors

q1 =

[
1
1

]
, p1 =

[
1 1

]
, q2 =

[
1
−1

]
, p2 =

[
1 −1

]
are such that

∆(λ1)q1 = 0, p1∆(λ1) = 0, ∆(λ2)q2 = 0, p2∆(λ2) = 0

(Compare this with the introduction in §3.5.5.) We have to scale q1, p1 and q2, p2 with
constants α1, β1 ∈ C and α2, β2 ∈ C in such a way that the ‘biorthogonality’ relationship
(3.76) is satisfied. For this we use (2.18) from Lemma 2.5 and Lemma 2.4.

> q1:=<1,1>;> p1:=Transpose(<1,1>);

> q2:=<1,-1>; p2:=Transpose(<1,-1>);

> alpha1:=1/sqrt(p1.DDelta(lambda1).q1); beta1:=alpha1;

> alpha2:=1/sqrt(p2.DDelta(lambda2).q2); beta2:=alpha2;

> q1:=alpha1*q1; p1:=beta1*p1;

> q2:=alpha2*q2; p2:=beta2*p2;

(We have chosen the scaling constants in such a way that, in addition to satisfying (3.76),
the vectors are of comparable numerical magnitude.) Using Lemma 2.5 we define the corre-
sponding critical eigenfunctions and their complex conjugates. (Here we use the assumption
that theta is real.) Note that these are expressions, rather than Maple functions.

> phi1:=exp(lambda1*theta)*q1;

> phi1bar:=map(conjugate,phi1);

> phi2:=exp(lambda2*theta)*q2;

> phi2bar:=map(conjugate,phi2);

Now it is easy to compute the quadratic critical center manifold coefficients from (3.77).

> h:=Array(0..2,0..2,0..2,0..2);

> h[1,1,0,0]:=MatrixInverse(Delta(0)).D2F(phi1,phi1bar);

> h[2,0,0,0]:=exp(2*lambda1)*MatrixInverse(Delta(2*lambda1)).D2F(phi1,phi1);

> h[1,0,1,0]:=exp(lambda1+lambda2)*

> MatrixInverse(Delta(lambda1+lambda2)).D2F(phi1,phi2);

> h[1,0,0,1]:=exp(lambda1-lambda2)*

> MatrixInverse(Delta(lambda1-lambda2)).D2F(phi1,phi2bar);

> h[0,0,2,0]:=exp(2*lambda2)*

> MatrixInverse(Delta(2*lambda2)).D2F(phi2,phi2);

> h[0,0,1,1]:=MatrixInverse(Delta(0)).D2F(phi2,phi2bar);

We also require their complex conjugates.
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> hbar[1,1,0,0]:=map(conjugate,h[1,1,0,0]);

> hbar[2,0,0,0]:=map(conjugate,h[2,0,0,0]);

> hbar[1,0,1,0]:=map(conjugate,h[1,0,1,0]);

> hbar[1,0,0,1]:=map(conjugate,h[1,0,0,1]);

> hbar[0,0,2,0]:=map(conjugate,h[0,0,2,0]);

> hbar[0,0,1,1]:=map(conjugate,h[0,0,1,1]);

At last we are able to compute the cubic critical normal form coefficients as in (3.78).

> gg[2,1,0,0]:=(1/2)*p1.(2*D2F(h[1,1,0,0],phi1)+D2F(h[2,0,0,0],phi1bar)

> +D3F(phi1,phi1,phi1bar));

> gg[1,0,1,1]:=p1.(D2F(h[0,0,1,1],phi1)+D2F(h[1,0,0,1],phi2)

> +D2F(h[1,0,1,0],phi2bar)+D3F(phi1,phi2,phi2bar));

> gg[1,1,1,0]:=p2.(D2F(hbar[1,0,0,1],phi1)+D2F(h[1,0,1,0],phi1bar)

> +D2F(h[1,1,0,0],phi2)+D3F(phi1,phi1bar,phi2));

> gg[0,0,2,1]:=(1/2)*p2.(2*D2F(h[0,0,1,1],phi2)+D2F(h[0,0,2,0],phi2bar)

> +D3F(phi2,phi2,phi2bar));

(We use gg instead of g since the latter symbol has already been defined.) They evaluate to

g2100 = 0.0113599727138386 + 0.0025880313644929 i

g1011 = 0.0065770995240054− 0.0112835232180977 i

g1110 = 0.0072326241332179 + 0.0129547559869050 i

g0021 = 0.0099439410875781− 0.0028471712578469 i

These are the critical normal form coefficients that we are looking for. Under the additional
hypothesis that the eigenvalues λ1,2 cross the imaginary axis transversally as the control
parameters a and c are varied (this can be verified numerically), we conclude from our discus-
sion of the double Hopf normal form in §3.4.2 (and in particular the condition (3.51)) that a
non-degenerate double Hopf bifurcation occurs at the critical parameter values (HH) with all
other parameters set at their values in (4.22). Moreover, this bifurcation is of ‘simple’ type,
since

(Re g2100)(Re g0021) = 0.000112962899422905 > 0

For an analysis of the bifurcation diagram of the corresponding truncated normal form, we
refer to the discussion of the ‘simple’ case on p. 359 of [25]. (Note that since Re g2100 > 0
and Re g0021 > 0 it is necessary to reverse time!) In fact, since the quantities

θ(0) :=
Re g1011

Re g0021
= 0.661417788589018, δ(0) :=

Re g1110

Re g2100
= 0.636676188879151

are such that 0 < δ(0) ≤ θ(0) and θ(0)δ(0) < 1, it follows from p. 360 of [25] that we
are in subcase II of the ‘simple’ double Hopf bifurcation. Hence the bifurcation diagram
displayed in subfigure II of Figure 8.25 in [25] applies, with time reversal. It predicts the
presence of two-dimensional invariant tori, but these are repelling and cannot be visualized
by direct integration of the DDE (4.20). We will return to this point in §4.3.8. Moreover, this
bifurcation diagram predicts two curves of subcritical Hopf bifurcation emanating from the
codimension-two point in the parameter plane. Such is consistent with Figure 4.4(a) in which
we see that the double Hopf point lies at the intersection of two subcritical Hopf branches.
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Questions about the effect of higher-order terms and persistence of ‘truncated’ dynamics
are addressed in §8.6.3 of [25]. Since the determinant of the matrix (??),∣∣∣∣ Re g2100 Re g1011

Re g1110 Re g0021

∣∣∣∣ = 0.0000653932106790078

is non-zero, Lemma 8.16 of [25] implies the presence of invariant two-dimensional tori near the
bifurcation point. (However, by the remark made earlier, such tori are unstable.) These come
into existence via Neimark-Sacker bifurcations of cycles that were in turn born in subcritical
Hopf bifurcations. Curves of Neimark-Sacker and subcritical Hopf bifurcation emanate from
the critical point in the parameter plane. In summary, the features of bifurcation diagram
8.25.II of [25] (with time reversed) persist under the addition of higher-order terms, but the
motion on the unstable torus may no longer be quasi-periodic due to phase locking.

It is interesting to note that there are no attractors other than the origin present in
bifurcation diagram 8.25.II of [25] (with time reversed). The origin is an attractor for certain
parameter values that correspond to points in the interior of the stability region in Figure
4.4(a). On the other hand, for ‘unstable’ parameter values we expect that small initial
conditions will ‘fly off’ to a remote attractor that is not present in the local bifurcation
diagram. This is illustrated in Figure 4.5.
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Figure 4.5: Time evolution of the variables x1 and x2 according to (4.20) starting from a constant
history function (x1(θ), x2(θ)) := (0.01, 0.0175) for θ ∈ [−h, 0] with h := max(τ1, τ2). Note that
this history function may be considered ‘small’ in the usual supremum norm. Fixed parameter
values are as in (4.22), while the control variables were set to a = 0.0905, c = 0.774, i.e. just
above the critical values (4.35). After a long transient, during which the system spends time close
to the stable manifolds of the saddles predicted by the bifurcation’s normal form, the dynamics
seem to ‘fly off’ and converge to a stable steady state far away from the origin. This behaviour
is not due to numerical instability, as can be checked by starting the integration from the distant
steady state.

We refrain from computing the higher-order critical normal form coefficients, since their
added value is small: We do not require them to guarantee non-degeneracy of the double Hopf
bifurcation and, as we have just seen, dynamical features of the bifurcation are determined
predominantly by the third order coefficients.
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4.3.6 The fold-Hopf point

In this subsection we show that for the critical parameter values

ac =
kc1

bg′(0)
= 0.00380017186861556, cc =

kc2
dg′(0)

= 0.839666953114366

with (kc1, k
c
2) as in (ZH1) and all other parameter values as in (4.22), the equilibrium (0, 0)

of (4.20) exhibits a non-degenerate fold-Hopf bifurcation. As in §4.3.5 we will present the
computations in the form of a commented Maple worksheet, thus enabling easy verification
of our results.

We assume that all commands in the initialization part of the worksheet as presented
in §4.3.5 have been executed in the Maple shell and we continue the worksheet from there
by providing point-specific data. First we enter the coordinates of the point, as well as the
critical eigenvalues.

> k1 := 0.00760034373723105; k2 := 1.00760034373723;

> a:=k1/(b*dg); c:=k2/(d*dg);

> omega0:=0.148557497656540;

> lambda0:=0; lambda1:=I*omega0;

Next, we compute the critical eigenvectors. Let ∆(λ0) and ∆(λ1) be the characteristic matri-
ces corresponding to the eigenvalues λ0 = 0 and λ1 = iω0. As can easily be verified by direct
substitution, the vectors

q0 =

[
1
1

]
, p0 =

[
1 1

]
, q1 =

[
1
−1

]
, p1 =

[
1 −1

]
are such that

∆(λ0)q0 = 0, p0∆(λ0) = 0, ∆(λ1)q1 = 0, p1∆(λ1) = 0

Again, we need to scale q0, p0 and q1, p1 with constants α0, β0 ∈ R and α1, β1 ∈ C in such
a way that the ‘biorthogonality’ relationship (3.71) is satisfied. For this we use once more
(2.18) from Lemma 2.5 and Lemma 2.4.

> q0:=<1,1>; p0:=Transpose(<1,1>);

> q1:=<1,-1>; p1:=Tranpose(<1,-1>);

> alpha0:=1/sqrt(p0.DDelta(lambda0).q0); beta0:=alpha0;

> alpha1:=1/sqrt(p1.DDelta(lambda1).q1); beta1:=alpha1;

> q0:=alpha0*q0; p0:=beta0*p0

> q1:=alpha1*q1; p1:=beta1*p1;

Using Lemma 2.5 we define the corresponding critical eigenfunctions and their complex con-
jugates.

> phi0:=exp(lambda0*theta)*q0;

> phi0bar:=map(conjugate,phi0);

> phi1:=exp(lambda1*theta)*q1;

> phi1bar:=map(conjugate,phi1);

The quadratic normal form coefficients are now easily computed from (3.74).



CHAPTER 4. EXAMPLES 65

> gg:=Array(0..3,0..3,0..3);

> gg[2,0,0]:=(1/2)*p0.D2F(phi0,phi0);

> gg[1,1,0]:=p1.D2F(phi0,phi1);

> gg[0,1,1]:=p0.D2F(phi1,phi1bar);

This yields the following output.

g200 = 0.00656040565870122470

g110 = 0.0132803410870657 + 0.000182334796002904 i

g011 = 0.0130415057497976

In order the calculate the cubic coefficients, we need to solve for the quadratic center man-
ifold coefficients using (3.73). Since these expressions involve bordered inverses of the type
addressed in Corollary 3.7, we first write a small procedure that implements (3.26) and (3.27).

> BINV:=proc(lambda,zeta,kappa)

> global q0,p0,q1,p1,lambda0,lambda1;

> local q,p,xi,gam,A,B,X;

>

> if lambda=lambda0 then

> q:=q0; p:=p0;

> elif lambda=lambda1 then

> q:=q1: p:=p1;

> else

> error "input is not an eigenvalue";

> end if;

>

> A:=Matrix([[Delta(lambda),q],[p,0]]);

> B:=<zeta+kappa*DDelta(lambda).q,0>;

> X:=LinearSolve(A,B);

> xi:=<X[1,1],X[2,1]>;

> gam:=-p.DDelta(lambda).xi+(1/2)*kappa*p.D2Delta(lambda).q;

>

> return(exp(lambda*theta)*(xi+gam*q-kappa*theta*q));

> end:

Now it is easy to evaluate the formulas in (3.73).

> h:=Array(0..2,0..2,0..2);

> h[2,0,0]:=BINV(lambda0,D2F(phi0,phi0),-p0.D2F(phi0,phi0));

> h[0,2,0]:=exp(2*lambda1)*MatrixInverse(Delta(2*lambda1)).D2F(phi1,phi1);

> h[1,1,0]:=BINV(lambda1,D2F(phi0,phi1),-p1.D2F(phi0,phi1));

> h[0,1,1]:=BINV(lambda0,D2F(phi1,phi1bar),-p0.D2F(phi1,phi1bar));

As usual, we also require the complex conjugates.

> hbar:=Array(0..2,0..2,0..2);

> hbar[2,0,0]:=map(conjugate,h[2,0,0]);

> hbar[0,2,0]:=map(conjugate,h[0,2,0]);

> hbar[1,1,0]:=map(conjugate,h[1,1,0]);

> hbar[0,1,1]:=map(conjugate,h[0,1,1]);
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At last we are able to evaluate the formulas (3.75) for the cubic critical normal form coeffi-
cients.

> gg[3,0,0]:=(1/6)*p0.(3*D2F(phi0,h[2,0,0])+D3F(phi0,phi0,phi0));

> gg[1,1,1]:=p0.(D2F(phi0,h[0,1,1])+D2F(phi1bar,h[1,1,0])

> +D2F(phi1,hbar[1,1,0])+D3F(phi0,phi1,phi1bar));

> gg[2,1,0]:=(1/2)*p1.(D2F(phi1,h[2,0,0])+2*D2F(phi0,h[1,1,0])

> +D3F(phi0,phi0,phi1));

> gg[0,2,1]:=(1/2)*p1.(D2F(phi1bar,h[0,2,0])+2*D2F(phi1,h[0,1,1])

> +D3F(phi1,phi1,phi1bar));

This yields

g300 = −0.000529267105230375018

g111 = −0.00320689049366882

g210 = −0.00158236276273148− 0.00000754921632836517 i

g021 = 0.0501035490853393− 0.0226017769063655 i

All critical normal form coefficients have been computed. Using (??), (3.48) and (??) and the
values for gjkl found above, we can compute the critical coefficients in the Gavrilov normal
form (??). These are:

b(0) = 0.00656040565870122470

c(0) = 0.0130415057497976

e(0) = 0.0242089386247185

σ(0) = 0.148557497656540 i

d(0) = 0.0132803410870657 + 0.0121673553626291 i

Thus it follows by Theorem 8.6 of [25] that the fold-Hopf bifurcation is non-degenerate. (Of
course, this statement is true provided we also verify that the critical eigenvalues cross the
imaginary axis transversally at the bifurcation point.)

We can extract more information from the critical coefficients by calculating the quantities

s := sign[b(0)c(0)] = +1, θ :=
Re g110

g200
= 2.02431705872512 > 0

Indeed, since s = +1 and θ is positive, we may apply Theorem 8.7 of [25] to conclude that
the fold-Hopf bifurcation is of the ’simple’ type: It can locally be described by a quadratic
normal form and no higher order terms of any sort need to be incorporated. (Hence the
cubic coefficients were calculated in vain, but we have included their computation anyway, for
the purpose of illustrating the implementation of the bordered inverse.) Only fold and Hopf
curves emanate from the codimension-two point. No global bifurcation curves or invariant
tori are present. For proofs of these statements we refer the reader to the detailed analysis
performed in §§8.5.2 and 8.5.3 of [25].

4.3.7 The Bautin (generalized Hopf) point

The third and last codimension-two bifurcation point for which we calculate the critical normal
form is the Bautin point, given by the values (GH1) in the (k1, k2)-plane. These correspond
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to the values

ac =
kc1

bg′(0)
= 0.251865121624750, cc =

kc2
dg′(0)

= 0.581201968343537

of the control parameters, with all other parameters fixed at their values given in (4.22). The
method is probably clear by now. Again, we assume that the worksheet presented in §4.3.3
has been executed in the active Maple session. We fix the critical parameter values and the
critical eigenvalues.

> k1:=0.503730243249497; k2:=0.697442362012240;

> a:=k1/(b*dg); c:=k2/(d*dg);

> omega0:=0.275909434388554; lambda0:=I*omega0;

Next, we compute the critical eigenvectors. Let ∆(λ0) be the characteristic matrix corre-
sponding to the critical eigenvalue λ0 = iω0. It is easily verified that

q =

[
1
1

]
, p =

[
1 1

]
are such that

∆(λ0)q = 0, p∆(λ0) = 0

The following code uses (2.18) from Lemma 2.5 to scale the vectors q and p in such a way
that the ‘biorthogonality’ relation (3.59) is satisfied.

> alpha:=1/sqrt(p.DDelta(lambda0).q); beta:=alpha;

> q:=alpha*q; p:=beta*p;

> p.DDelta(lambda0).q;

Next, we use Lemma 2.5 to define the corresponding eigenfunction.

> phi:=exp(lambda0*theta)*q;

> phibar:=map(conjugate,phi);

Everything is ready to evaluate the formulas from §3.5.3. We start with (3.60) and (3.61).

> h:=Array(0..3,0..3);

> h[2,0]:=exp(2*lambda0*theta)*MatrixInverse(Delta(2*lambda0)).D2F(phi,phi);

> h[1,1]:=MatrixInverse(Delta(0)).D2F(phi,phibar);

> h[3,0]:=exp(3*lambda0*theta)*

> MatrixInverse(Delta(3*lambda0)).(3*D2F(phi,h[2,0])+D3F(phi,phi,phi));

The reader can check that the real part of (3.63) vanishes, in accordance with the fact that
we find ourselves at a point where the first Lyapunov coefficient is zero.

> c1:=(1/2)*p.(D2F(phibar,h[2,0])+2*D2F(phi,h[1,1])+D3F(phi,phi,phibar));

For (3.64) we need to evaluate a bordered inverse. We could write a procedure for this (as
in §4.3.6), but in fact a simple calculation shows that ζ + κ∆′(λ0)q = 0, in the notation of
Corollary 3.7. It follows that

> h[2,1]:=exp(lambda0*theta)*kappa*((1/2)*p.D2Delta(lambda0).q-theta)*q;
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We also make the complex conjugates of the center manifold coefficients available.

> hbar:=Array(0..3,0..3);

> hbar[2,0]:=map(conjugate,h[2,0]);

> hbar[3,0]:=map(conjugate,h[3,0]);

> hbar[2,1]:=map(conjugate,h[2,1]);

We continue with (??) and obtain

> h[3,1]:=exp(2*lambda0*theta)*

> MatrixInverse(Delta(2*lambda0)).(D2F(phibar,h[3,0])+3*D2F(h[2,0],h[1,1])

> +3*D2F(phi,h[2,1])+3*D3F(phi,phibar,h[2,0])+3*D3F(phi,phi,h[1,1])

> +D4F(phi,phi,phi,phibar))-6*c1*MatrixInverse(Delta(2*lambda0)).

> (DDelta(2*lambda0)-IdentityMatrix(2)-theta*Delta(2*lambda0)).h[2,0];

and

> h[2,2]:=MatrixInverse(Delta(0)).(2*D2F(phibar,h[2,1])+2*D2F(h[1,1],h[1,1])

> +2*D2F(phi,hbar[2,1])+D2F(h[2,0],hbar[2,0])+D3F(phibar,phibar,h[2,0])

> +D3F(phi,phi,hbar[2,0])+4*D3F(phi,phibar,h[1,1])

> +D4F(phi,phi,phibar,phibar));

All cards are on the table to compute the second Lyapunov coefficient from (3.69) and (3.70).

> c2:=(1/12)*p.(6*D2F(h[1,1],h[2,1])+3*D2F(hbar[2,1],h[2,0])

> +D2F(hbar[2,0],h[3,0])+3*D2F(phi,h[2,2])+2*D2F(phibar,h[3,1])

> +6*D3F(phibar,h[2,0],h[1,1])+6*D3F(phi,h[1,1],h[1,1])

> +3*D3F(phi,h[2,0],hbar[2,0])+6*D3F(phi,phibar,h[2,1])

> +3*D3F(phi,phi,hbar[2,1])+D3F(phibar,phibar,h[3,0])

> +6*D4F(phi,phi,phibar,h[1,1])+3*D4F(phi,phibar,phibar,h[2,0])

> +D4F(phi,phi,phi,hbar[2,0])+D5F(phi,phi,phi,phibar,phibar));

Taking the real part we find

l2:=(1/omega0)*Re(c2);

with output

l2(0) = 0.00110327860627586

Let us in addition assume that the map (a, c) 7→ `1(a, c) is regular at (a, c) = (ac, cc), where
`1(a, c) is the first Lyapunov coefficient. Then the zero equilibrium of (4.20) exhibits a non-
degenerate Bautin bifurcation at the critical point (GH1). Since l2(0) > 0 we find ourselves
in the reverse of the situation discussed in §8.3.2 of [25]. In particular, by calculating l2(0) we
have proved the existence of a curve of fold bifurcations of limit cycles emanating from the
Bautin point in the (k1, k2)-plane. At this curve two cycles annihilate and we are left with
an unstable equilibrium. (This is why the case l2(0) > 0 is sometimes considered ‘hard’ or
‘dangerous’, in the spirit of the terminology used to describe a subcritical (non-degenerate)
Hopf bifurcation.)
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4.3.8 In pursuit of a stable invariant torus

In conclusion of this example we return to the double Hopf point analyzed in §4.3.5. There
we concluded that this point is of ‘simple’ type. Moreover, we saw that the values of the
critical normal form coefficients predicted the existence of two-dimensional invariant tori near
the bifurcation point. However, these tori were repelling and therefore they could not be
expected to appear in simulations.

In this section we re-run the computations performed in §4.3.5 but we set our ‘fixed’
parameters at the values

b = 2.0, d = 1.2, τ1 = 12.99, τ2 = 20.15 (4.36)

instead of the values given in (4.22). We note that b and d remain unaltered while the delays
τ1 and τ2 are changed slightly, since only these latter parameters affect the position of the
codimension-one curves in the (k1, k2)-plane. The effect of this change is that the double Hopf
point labeled HH in Figure 4.4(a) now occurs at the intersection of two supercritical Hopf
branches. More specifically, its coordinates are

(kc
′

1 , k
c′
2 ) = (0.559667089973705, 0.688875991374739)

(ω′1, ω
′
2) = (0.272554827172345, 0.174659443775867)

(HH’)

In order to compute the critical normal form coefficients for these new fixed parameter values,
we are required to change the scripts presented in §§4.3.3 and 4.3.5 at two places. Firstly, the
Maple code block labeled (*) in §4.3.3 must be updated to use the values (4.36). Secondly,
the Maple code block labeled (**) in §4.3.5 should be replaced by

> k1:=0.559667089973705; k2:=0.688875991374739;

> a:=k1/(b*dg); c:=k2/(d*dg);

> omega1:=0.272554827172345; omega2:=0.174659443775867;

> lambda1:=I*omega1; lambda2:=I*omega2;

reflecting the new coordinates of the double Hopf point in the (k1, k2)-plane and the new
values for the corresponding frequencies ω1,2 given by (HH’). The non-resonance condition
(4.3.4) since for (n1, n2) = (2, 3) we have

n1ω1− n2ω2 = 0.021131323017089

and this value of (n1, n2) minimizes the absolute value of the difference of the left- and right
hand sides of (4.3.4) over all admissible pairs (n1, n2). The remainder of the script in §4.3.5
remains unaltered. Upon execution we now find the following values for the critical normal
form coefficients:

g2100 = −0.00158423502629251 + 0.00128155174197111 i

g1011 = −0.00076572821118787− 0.00382491890256949 i

g1110 = −0.00044023276677625 + 0.00371800958543468 i

g0021 = −0.00176942031197673− 0.00141734227810451 i

Again, as in §4.3.5, the bifurcation is of ‘simple’ type, since

(Re g2100)(Re g0021) = 0.00000280317763446696 > 0
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We also note that ∣∣∣∣ Re g2100 Re g1011

Re g1110 Re g0021

∣∣∣∣ = 0.00000246607898545709

is non-zero. We compute the quantities

θ(0) :=
Re g1011

Re g0021
= 0.432756539531544, δ(0) :=

Re g1110

Re g2100
= 0.277883495485201

and observe that 0 < δ(0) ≤ θ(0) and θ(0)δ(0) < 1. It follows from p. 360 of [25] that we find
ourselves again in subcase II of the ‘simple’ double Hopf bifurcation. However, in contrast to
the situation of §4.3.5 we presently have Re g2100 < 0 and Re g0021 < 0, so bifurcation diagram
8.25.II of [25] applies now without time reversal. In particular, we expect the existence of two
Neimark-Sacker curves emanating from the codimension-two point in the (k1, k2)-plane. At
these curves a stable two-dimensional invariant torus is born and this torus should persist for
parameter values sufficiently close to the Neimark-Sacker curves. The dynamics on the torus
are generically not quasi-periodic but rather phase-locked due to the effect of higher-order
terms. This is illustrated in Figure 4.6. Note that the increased accuracy used in the time
integration is required because we restrict ourselves to a very small neighbourhood of the
bifurcation point. Such a restriction is necessary due to the nearby presence of the Bautin
point and the breakdown of the invariant torus only slightly away from the Neimark-Sacker
curves.
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Figure 4.6: The result of an integration over 30.000 time units of the system (4.20) for
(k1, k2) = (0.5598, 0.6890) close to the critical values (kc

′

1 , k
c′

2 ) given by (HH’). The other pa-
rameters are fixed at their values (4.36). As an initial condition we chose the constant history
function (x1(t), x2(t)) := (0.050, 0.075). To produce the time series 4.6(a) and 4.6(b) the MATLAB

routine dde23 was used with an absolute tolerance of 10−8 and a relative tolerance of 10−6. Only
the last 1000 time steps were reproduced for clarity of presentation. In 4.6(c) we represent the
dynamics during the last 2500 time steps in the ‘physical’ phase space consisting of the (x1, x2)-
plane. The torus structure is clearly visible. Finally, 4.6(d) and 4.6(e) display the outcome of
a fast Fourier analysis of the last 20.000 time steps. As expected, two frequency peaks reveal
themselves very closely to the values

ω1,2

2π with ω1,2 as in (HH’).



Chapter 5

Final remarks and future work

In this text we have generalized (or rather: lifted) the techniques used in [24] and [29] for
the calculation of critical normal form coefficients for finite dimensional ODEs and map-
pings to the infinite-dimensional setting of delay differential equations. We argued that these
techniques fit naturally in the abstract functional-analytic framework used in [11] for the
treatment of DDE using semigroup methods. For an overview of the contents and goals of
this text, we refer to Chapter 1. In the remainder of this short chapter we like to point out
some directions for future work.

From the abstract viewpoint of dual perturbation theory (sun-star calculus) there is no
principal difference between delay differential equations such as (1.1) and renewal equations
such as (1.2). Differences are however predominant at a lower, more computational level.
Therefore, we have chosen to restrict ourselves to a discussion of critical normalization for
DDE. This immediately suggests one natural direction for future work: An extension of the
normalization formulas to allow for mixed systems of DDE and renewal equations, thereby
making them potentially useful for the local analysis of structured population models such as
[10, 9], [4, 5]. We plan to take this task at hand in the near future.

Another obvious direction of future activity is in the realm of software development.
The continuation package DDE-BIFTOOL mentioned in the introductory Chapter 1 is currently
incapable of bifurcation detection or normal form computations at critical points. The results
from Chapter 3 of this text may readily be implemented to take care of the latter part of this
task (i.e. the calculation of critical normal forms). In §4.3 Maple examples were provided
to stimulate work in this direction. Clearly, the code presented these was not optimal. For
instance, explicit matrix inversion was used liberally instead of e.g. LU decomposition to solve
linear systems because the appearance of the resulting Maple code is closer to the appearance
of the formulas derived in §3.5. For large problems such an approach is clearly not advisable.

Elaborating on the previous point, I would like to add that I do believe strongly that nu-
merical methods can only flourish when they are available in a usable form. The local analysis
of real-world DDE is, apart from a small class of very simple systems, beyond the reach of
pencil-and-paper methods. Since the characteristic equation is intrinsically transcendental
(due to the infinite-dimensionality of DDE), there is little hope for symbolic formulas for the
location of the critical points of a system. Ideally, I envision a software package for DDE
capable of the same sort of analysis as CONTENT or MatCont.

This brings me to my final point. Normal form theorems for local bifurcations always
hold under the assumption of certain genericity conditions. These typically divide into so-
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called nondegeneracy conditions and transversality conditions. If both are fulfilled, then a
parameter-dependent normal form provides detailed insight into the qualitative unfolding of
the dynamics near a critical point, see e.g. Chapter 8 of [25]. Calculating critical normal form
coefficients amounts to verifying nondegeneracy: If certain critical coefficients vanish, then a
normal form description requires computations at (even) higher order. However, in this text
we almost completely neglected the issue of transversality, which is intimately related to the
existence of a smooth and smoothly invertible function K,

(β1, β2) = K(α1, α2)

relating the original model parameters (α1, α2) to the unfolding parameters (β1, β2) that ap-
pear in the parameter-dependent normal form of the bifurcation under scrutiny. As demon-
strated in §3.3 of [29] in the context of maps, the normalization method discussed in this
text is easily adaptable to apply to parameter-dependent normalization, in which case branch
switching capabilities for continuation software for DDE are within reach. It is merely neces-
sary to replace the homological equation introduced in Chapter 3 by a parameter-dependent
counterpart.

Critical normalization tells us what to expect, parameter-dependent normalization shows
where to expect it. Both are necessary for a fruitful bifurcation analysis of dynamical systems.
There is interesting work ahead.
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