On a Normalization Technique for Codimension Two Bifurcations of Equilibria of Delay Differential Equations Sebastiaan G. Janssens Master Thesis Under supervision of Dr. Yuri A. Kuznetsov Co-supervised by Prof. Dr. Odo Diekmann Department of Mathematics, Utrecht University Budapestlaan 6, 3584 CD Utrecht, The Netherlands Submitted November 2010 Last updated and corrected November 28, 2018 Copyright 2010 - 2018 Sebastiaan G. Janssens (sj@dydx.nl) This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. # Contents | | Sun | nmary of updates and corrections | iii | |---|---|---|-----| | 1 | Introduction | | | | | 1.1 | Structure of this thesis | 3 | | | 1.2 | Existing literature | 4 | | | 1.3 | Retrospective and acknowledgements | 5 | | 2 | Stationary states of delay differential equations | | | | | 2.1 | Semiflows generated by delay differential equations | 8 | | | 2.2 | Linearization and analysis near an equilibrium | 11 | | | 2.3 | The center manifold | 18 | | 3 | Codimension-two critical normal forms | | | | | 3.1 | The method by example: Cusp bifurcation | 22 | | | 3.2 | Solvability and bordered operators | 24 | | | 3.3 | The cusp bifurcation revisited | 29 | | | 3.4 | Computation of critical normal form coefficients | 31 | | | 3.5 | Critical normal form coefficients | 36 | | 4 | Examples | | | | | 4.1 | Calculating symbolic derivatives for DDE of discrete type | 43 | | | 4.2 | Bogdanov-Takens bifurcation in a Van der Pol oscillator | 44 | | | 4.3 | Codimension-two Hopf bifurcations in a neural mass model | 49 | | 5 | Fina | al remarks and future work | 72 | # Summary of updates and corrections In 2010 my master thesis [21] was submitted and graded. Since then, a number of works have appeared [37, 12, 39, 2] for which this thesis has some relevance. For this reason I felt that it would be good to implement various updates and corrections and to make the results available in the present text. Following the summary you can find some additional comments on availability of future updates, and software. #### Summary - All parameter dependence in the mathematical notation and the explanatory text of Chapters 2, 3 and Chapter 4 (except for the last section) was removed. Everything is done at criticality anyway, so there is no need for extra notation. - §2.2 was split into a general part and two separate subsections discussing the cases of a simple and a double eigenvalue, respectively. - The old Lemma 2.4 is the new Lemma 2.5. The old lemma mixed two possible representations of the adjoint eigenvector ϕ^{\odot} . This was rectified: Here and everywhere else we now consistently use the representations in Table 2.1. - The *old* Lemma 2.5 is the *new* Lemma 2.4. It also applies to non-simple eigenvalues and its new proof is almost trivial. - Lemma 2.7 also mixed two possible representations of the adjoint eigenvector ϕ_1^{\odot} and generalized eigenvector ϕ_0^{\odot} . This, too, was rectified. The proof now includes a derivation of the formula for the duality pairing $\langle \phi_0^{\odot}, \phi_1 \rangle$. - Lemma 2.8 and Proposition 2.9 are new. The latter offers an explicit algorithm for obtaining properly normalized generalized eigenvectors and adjoint eigenvectors corresponding to a double eigenvalue of geometric multiplicity one, for use in the actual computation of the Bogdanov-Takens critical normal form. - Some simplifications were made in §3.2. In particular, the proof of Proposition 3.6 now consistently uses the representations from Table 2.1 for the adjoint eigenfunction ϕ^{\odot} and the duality pairing between $X^{\odot*}$ and X^{\odot} . - §3.4.2 was simplified: Discussion of parameter-dependent normal forms is relegated to the references and we use as much as possible the same symbols for the critical normal form coefficients as in [25, Chapter 8], allowing for easy comparison. - In §3.3 and §3.5 the center manifold coefficients are now explicitly θ -dependent and the shorthand for the bordered inverse is evaluated at θ , see (3.60) and (3.64) for examples. - In §3.5.3 the expression for h_{31} was corrected by deleting -I from the last term. - In §3.5.4 a missing θ was added inside the exponential in h_{020} . In §3.5.5 missing θ s were added inside the exponentials in the quadratic and cubic center manifold coefficients h_{jklm} . - The *old* §4.2.3 on the symbolic calculation of higher order derivatives was rewritten and moved to §4.1. The new section no longer contains code listings, see the comments on software below. - The Van der Pol example in §4.2 now takes advantaged of the new §4.1. In (4.12), (4.13) and (4.17) some signs were corrected. The expressions had been copied wrongly from the output of a correct symbolic computation. - Lots of minor editing. Various misspellings and otherwise innocent typos were corrected. Editing is not finished. Perhaps most importantly, at this moment I am reviewing the final numerical example in $\S 4.3$ to include the corrections in $\S 3.5.4$ and $\S 3.5.5$ that were mentioned above. I hope and believe that the text is otherwise free of cardinal mathematical sins. Its latest version will always be available online via #### http://delayequations.net together with supplementary material and links to works by others¹. I intend to use this site as a collection of study material and software, for delay equations in a broad sense. #### Software The Maple code - a major part of the *old* §4.2.3 - was moved out of the text, simplified by eliminating excessive loop nesting in favor of more efficient functional constructs and put into the separate DelayTools package - available via the above address and also briefly mentioned in §4.2.3. It is my belief that keeping the text and the code separated is - on average - to the benefit of the reader, who will not be forced to understand the specifics of a particular software environment. Indeed, some may prefer free computer algebra software such as SymPy [30] or Maxima [28] or even just pen and paper. Those who are mostly interested in the semi-automated numerical computation of critical normal forms may like to have a look at the latest versions of the MATLAB package DDE-BIFTOOL [14, 33]. In a recent cooperation [1] with M.M. Bosschaert (Hasselt, Belgium) and Yu. A. Kuznetsov (Utrecht, The Netherlands) critical normalization and branch switching were implemented in DDE-BIFTOOL. In turn, this cooperation has also led to some of the previously listed corrections and improvements in the present text. For this I am grateful. ¹I very much welcome cooperation based on technical knowledgeability and proper attribution at all times. # Chapter 1 ## Introduction Nobody realizes that some people expend tremendous energy merely to be normal. Albert Camus (1913 - 1960) Deterministic continuous-time models in the sciences often take the form of an ordinary differential equation. When the system under scrutiny is assumed to be free of external forcing, this equation will be autonomous and can be written as $$\dot{x}(t) := \frac{dx}{dt}(t) = f(x(t), \alpha), \tag{ODE}$$ with solutions x depending on time t and taking values in \mathbb{R}^n . Here $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ is a smooth vector field depending on an m-dimensional parameter $\alpha = (\alpha_1, \dots, \alpha_m)$. A bifurcation analysis of (ODE) typically starts by locating its equilibria and then proceeds by analyzing how their number and stability depend on the value of a certain one-dimensional control parameter, say $\alpha_1 \in \mathbb{R}^1$, the identification of which often requires good modelling insight. At certain values of α_1 bifurcations may occur. For example, equilibria may collide in a fold-bifurcation or may spawn periodic solutions in a Hopf-bifurcation. These are the canonical examples of local codimension-one bifurcations: Their occurrence depends on the fulfillment of a one-dimensional condition, the 'tuning' of a one-dimensional parameter. The character of a codimension one bifurcation may depend on a secondary parameter. An investigation of this dependence requires a two-dimensional parameter space, $(\alpha_1, \alpha_2) \in \mathbb{R}^2$. For instance, at $\alpha_1 = \alpha_{1,c}$ an equilibrium may exhibit a Hopf bifurcation which, in turn, changes from supercritical to subcritical at $(\alpha_1, \alpha_2) = (\alpha_{1,c}, \alpha_{2,c})$. This is an example of a codimension-two bifurcation. (We will actually encounter this type of bifurcation in §4.3 in Chapter 4.) Software such as CONTENT [27] and its successor MATCONT [6] is currently used to great advantage in the continuation of equilibria of ODE and their codimension-one bifurcations, as well as in normal form analysis at codimension-one/two critical points. We refer to Chapter 10 of [25] for an introduction to numerical continuation techniques for equilibria of ODE, to [23] for an up-to-date survey of numerical pathfollowing and its applications in various contexts, and to [25] for an introduction to applied finite-dimensional bifurcation analysis in general. ODE models assume an instantaneous effect of the dependent variable x on its rate of change \dot{x} . Depending on the modelling context this assumption may not be justified. The mathematical theory of structured biological populations has been one of the driving forces behind a systematic functional-analytic investigation of equations of the form $$\dot{x}(t) = F(x_t, \alpha), \tag{1.1}$$ or $$x(t) = F(x_t, \alpha), \tag{1.2}$$ where F is a parameter-dependent map from some infinite-dimensional function space X to
\mathbb{R}^n that depends on the **history** $x_t \in X$ **at time** t of the unknown x, $$x_t: [-h, 0] \to \mathbb{R}^n, \qquad x_t(\theta) := x(t + \theta).$$ Here h > 0 is the delay parameter. We make a few remarks to fix our terminology. In this text we will call (1.1) a <u>delay</u> <u>differential equation</u> and use the abbreviation **DDE**. Its counterpart (1.2) is a purely functional equation that does not involve any derivatives. We will call it a **renewal equation**, also known as a Volterra functional equation. Both classes form a subset of the larger class of <u>delay equations</u>. One also encounters <u>mixed systems</u> involving both (1.2) as well as (1.1). It is natural to regard such systems as delay equations as well. It has recently been shown in [7] that the functional analytic framework presented in [11] for the analysis of DDE is equally well-suited for dealing with renewal equations and mixed systems. Indeed, on the abstract semigroup level, the perturbation theory of dual semigroups (so-called sun-star calculus) truly serves as a unifying device. In this thesis we restrict our attention to ordinary DDE with finite delay parameter, i.e. - we assume that $0 < h < \infty$, - we work in X = C([-h, 0], Y) with $Y = \mathbb{R}^n$. Relaxing the first restriction leads to non-compactness of the history interval [-h,0] which slightly complicates the spectral analysis of linear equations. Admission of more general choices of the space Y enabled the treatment partial delay differential equations or structured population models with an infinite number of feedback variables or states-at-birth. We mention the paper [8] which discusses into some detail how the framework introduced in [11] and [7] can be adapted to apply to these situations. Also, the restriction to DDE deserves an explanation. - Although DDE, renewal equations, and mixed systems are very similar on an abstract semigroup level, we are interested in numerical algorithms and issues of implementation. We feel that this interest is served best by treating DDE and renewal equations separately. In future work we plan to discuss normalization for the case of renewal equations and mixed systems. - In contemporary applied mathematics DDE seem to be more prominent than renewal equations and mixed systems. The recent book [15] by Erneux provides an up-to-date overview of the various application areas of time-invariant DDE. These range from biological to optical and mechanical systems in which feedback plays an important role. • In line with this, software for the continuation of equilibria and periodic orbits of DDE is nowadays publicly available. We mention the MATLAB package DDE-BIFTOOL developed at the University of Leuven [14]. Also available is the C++ software Knut (formerly PDDE-CONT) developed at the University of Bristol [34], [35], but this software is written specifically for the continuation of periodic orbits. At the moment DDE-BITFOOL is not capable of detecting local bifurcations and performing normal form analysis, not even for codimension-one singularities. It is here that we hope the methods presented in this manuscript may be of use. This purpose of this thesis is to 'lift' the normalization method for local bifurcations of ODE presented in [24] and reprinted in Chapter 8 of [25] to the infinite-dimensional setting of DDE. We work out in detail how to compute the *critical* normal form coefficients for all five generic codimension-two bifurcations of equilibria, - cusp, - generalized Hopf, - Bogdanov-Takens, - fold-Hopf, - double Hopf, and illustrate our results by means of examples. The formulas we derive are explicit and rather compact. They depend only on first and higher-order (Fréchet-)derivatives of the right-hand side of (1.1), as well as on eigenfunctions pertaining to the critical equilibrium. As we will see, these eigenfunctions can always be represented as finite-dimensional objects without requiring any intermediate discretization or truncation steps. #### 1.1 Structure of this thesis Whenever we like to stress a particular phrase, we use *italic*. Definitions are printed in **bold-face**. We have chosen to employ a 'theorem-proof' style of writing, but we have interspersed the text with (hopefully illuminating) comments of a less formal nature. Chapter 2 is both introductory as well as preparatory. We collect and (where necessary) augment and adapt, in a fashion as concise and self-contained as reasonably possible, those elements of the theory of DDE that are required to understand the lifting procedure of the normalization technique mentioned in the introduction from the finite-dimensional ODE setting to the infinite-dimensional setting of DDE. Key elements in this regard are: - A computational spectral theory, by which we mean an explicit procedure to obtain the eigenvalues and corresponding (generalized) eigenvectors associated with the linearization around an equilibrium of a nonlinear DDE. The task of finding such a procedure is more demanding than its ODE-analogue, but fortunately we shall require only a small part of the characteristic matrix formalism involved. - An invariant (center) manifold theory for non-hyperbolic equilibria. Chapter 3 and 4 form the core of the manuscript. In Chapter 3 we carry out the program of deriving explicit expressions for the critical normal form coefficients of the five codimension-two bifurcations mentioned in the introduction. At various points computational lemmas are presented and proven. The structure of this Chapter is similar in purposes to [24]. In Chapter 4 we illustrate our results by means of two examples that together cover all the bifurcations that were met in Chapter 3: A relatively simple, analytically tractable Van der Pol oscillator equation and a more elaborate system appearing in neurodynamics. In contrast to the first example, an analysis of the second example requires numerical aids. By providing an analytically as well as a numerically spirited example we hope to convince the reader that our expressions are equally well suited for paper-and-pencil computations and computer implementation. Together with a brief example on the cusp bifurcation in §3.3 the examples in Chapter 4 cover all five generically occurring local codimension-two bifurcations in DDE. Finally, in Chapter 5 we briefly look ahead. ### 1.2 Existing literature Two standard references for the theory of DDE are found most prominently in the literature. There is the book of Hale and Verduyn Lunel [19] (a revised edition of the 1977 original by Hale) and the book by Diekmann, Van Gils, Verduyn Lunel and Walther [11]. Whenever one wants to set up a dynamical theory for DDE, one inevitably encounters the functional analytic difficulty that the 'natural' phase space $C([-h,0],\mathbb{R}^n)$ of continuous functions is too 'small' for a successful linear or nonlinear (perturbation) theory. This is an important theoretical issue to which we devote §2.1 in Chapter 2. There are two ways to address the problem: In [19] it is essentially ignored by taking a 'formal adjoint' approach. This 'solution' lacks mathematical rigor and therefore it does not form a good basis for a method of normal form computation that we would like to extend (at a later stage) to renewal equations and mixed systems. It is primarily for this reason that we have chosen to adopt [11] as our main reference for the theory of DDE. In this work the 'state space problem' is tackled using sun-star calculus. As we noted above, this approach leads to a framework that is well suited for the analysis of renewal equations and mixed systems. Furthermore, expressions for critical normal form coefficients have an appearance that is strikingly similar to their finite-dimensional analogues. A formula for the direction of bifurcation (the first Lyapunov coefficient) for Hopf singularities in the sun-star context was first derived and applied to DDE by Van Gils, see Chapter X of [11] and the literature comments in §X.4. We will encounter this formula again in §3.5.3 as a 'by-product' of our treatment of the generalized Hopf bifurcation. Although §IX.10 of [11] contains an example of a DDE exhibiting a Bogdanov-Takens bifurcation, the corresponding normal form calculation is performed by first computing the center manifold and then analyzing the restricted system. This traditional two-stage approach is computationally involved and essentially obsolete. We do not know of other examples of systematic analysis of codimension-two points of DDE using the sun-star method. For an introduction to the work of Faria and Magelhães on normal forms for DDE from the mid-1990s we refer to the review article [16] and the references therein. The work of these authors is based on the formal adjoint approach taken in [19]. Its purpose is to provide a method for the calculation of normal form coefficients (possibly depending on parameters) that avoids preliminary computation of the center manifold by employing a normalization that also linearizes the center manifold. This goal is shared by the approach proposed in the present manuscript. However, we find our method to be preferable for three reasons. - From a theoretical viewpoint, the method in this manuscript is based on sun-star calculus. In contrast to an approach based on formal adjoint theory, it is therefore entirely rigorous and is expected to extend to renewal equations and mixed systems with relatively little effort. - It leads to explicit and ready-to-implement expressions for the critical normal form coefficients. These are compact, easy to evaluate and valid under weaker conditions than those imposed in the work of Faria and Magelhães. (For instance, in order to evaluate the formulas presented in this manuscript for a particular DDE, there is no need to solve functional equations or boundary value problems.) The example in §4.2 illustrates this point by comparing results using our method to
results from the literature [22] that were derived by means of the Faria Magelhães approach. - It has been completely implemented, in the sense that formulas for the critical normal forms of all five codimension-two bifurcations of equilibria are available. (We do not limit ourselves to a discussion of the Hopf and Bogdanov-Takens bifurcations.) Moreover, as will be illustrated in §4.3, these formulas are also readily evaluated when only numerical (as opposed to symbolic) data is available. The basic idea of the normalization approach used in this thesis goes back to the work of Coullet and Spiegel [3]. The introduction to Chapter 3 contains more references to applications of the method to ODEs and maps. ## 1.3 Retrospective and acknowledgements The process of writing this thesis bore, at times, close similarities to some sort of quest. In fact, not so much the writing itself but rather the complications arising from a variety of factors introduced an unnecessarily large and regrettable delay [sic] in its completion. The first version of the thesis was ready by September 2007 as the result of a coordinated effort between the Mathematical Institute of the University of Utrecht and the Department of Theoretical Physics of the Free University of Amsterdam. Unfortunately, what the mathematician may appreciate as useful formalism is sometimes mistaken by a physicist for unnecessary abstraction. By its very nature, normal form computation is a subtle matter that requires a bit of theoretical preparation, particularly when one deals with infinite-dimensional systems such as delay equations. Ultimately, it was decided that the thesis would be completed independently of the Department of Theoretical Physics in Amsterdam. This warranted a rather thorough rewriting of parts of the material as well as the introduction of the second example in Chapter 4 that took the space of a foreseen but never completed example from laser physics. However, it would be unjust to blame the classical mathematics - physics tension for the entire time gap from the Autumn of 2007 to the Autumn of 2010. In the years in between I have been plagued by problems of the mind that sometimes made it hard to work. This fact, combined with the start of my PhD track in Autumn 2007 that brought other tasks to the forefront, did not promote a swift completion of this manuscript. The quote at the top of the present chapter should be read in this light. It is therefore a pleasure to report that, despite the above difficulties, every time I resumed the work on this thesis, I did so with pleasure. In particular, it was very stimulating to write §4.3, seeing the methods of Chapter 3 come to life. I would like to thank Stephan van Gils, Hil Meijer and Sid Visser from the Department of Mathematics of the University of Twente for suggesting their neural mass model [38] as a test case. I appreciate the opportunity I had in April 2010 to meet and speak with Dirk Roose from the Department of Computer Science of the University of Leuven during his visit to Utrecht. Furthermore, thanks are due to Odo Diekmann for a careful reading of Chapter 2 and the first paragraph of Chapter 3. I am grateful to him and Stephan van Gils for giving me the time to come to peace with myself and calmly finish incomplete work. My thesis adviser Yuri Kuznetsov is to be thanked for his lasting patience and his stimulating work [25] without which this manuscript would not have been written. On a personal level, I am much indebted to my parents, Simone and Jos, and my girlfriend Alina for their love and support. I would not be without the three of you. Zeist, September 2007 - September 2010 # Chapter 2 # Stationary states of delay differential equations This chapter introduces the theory of delay differential equations in so far as needed to understand the material in the subsequent chapter. Proofs that can be found in the literature are omitted. Instead, we provide detailed references. For h > 0 let $C([-h, 0], \mathbb{R}^n)$ be the Banach-space of continuous functions $\phi : [-h, 0] \to \mathbb{R}^n$, endowed with the supremum-norm $$\|\phi\| := \sup\{|\phi(x)| : -h \le x \le 0\}.$$ By $C([-h,0],\mathbb{R}^n)^*$ we shall denote its dual space. A representation theorem by F. Riesz enables us to identify this dual space with the Banach space $NBV([0,h],\mathbb{R}^n)$ of functions $\eta:[0,h]\to\mathbb{R}^n$ of bounded variation on [0,h], normalized by requiring that $\eta(0)=0$ and η be continuous from the right on the open interval (0,h). Let $F: C([-h,0],\mathbb{R}^n) \to \mathbb{R}^n$ be of class C^k , where $k \geq 1$ is assumed to be as large as necessary. We consider the DDE $$\dot{x}(t) = F(x_t), \qquad t \ge 0, \tag{DDE}$$ with initial condition $\phi \in C([-h,0],\mathbb{R}^n)$ specified as $$x_0 = \phi.$$ (IC) Recall from the introduction that for every fixed $t \geq 0$ the history function $x_t : [-h, 0] \to \mathbb{R}^n$ is defined by $$x_t(\theta) := x(t+\theta), \quad -h \le \theta \le 0.$$ By a solution of (DDE) with initial condition (IC) we shall mean a function $x(\cdot,\phi)$: $[-h,t_+)\to\mathbb{R}^n$ which satisfies (IC), is differentiable on $(0,t_+)$ and satisfies (DDE) there. In this paper we shall always assume that solutions are in fact global, in the sense that we can take $t_+=\infty$. For linear equations this holds generally, while for nonlinear equations it requires ad-hoc verification by deriving a-priori bounds on the solutions, just as in the case of ordinary differential equations, but often this step is omitted in applications. In the case that F is linear in the state variable, (DDE) may be written as $$\dot{x}(t) = \int_0^h d\eta(\theta) x_t(-\theta), \qquad t \ge 0, \tag{2.1}$$ where $\eta \in \text{NBV}([0, h], \mathbb{R}^n)$ is uniquely and explicitly determined by F and the integral is a Riemann-Stieltjes integral, see Chapter I.1 of [11]. In this chapter we are interested in collecting a number of tools and results vital to an analysis of (DDE) near a constant solution. In §2.1 we show how (2.1) and its nonlinear perturbations generate a semiflow in the function space $C([-h, 0], \mathbb{R}^n)$. Although we will not get into technical questions of existence and uniqueness (these have been taken care of in [11]), in this paper we shall need parts of the formalism involved. In §2.2 we explain how the asymptotics of the linearization near a hyperbolic equilibrium of the nonlinear semiflow corresponding to (DDE) may be analyzed by means of the so-called characteristic matrix. In §2.3 we discuss non-hyperbolicity. When one or more eigenvalues of an equilibrium of (DDE) lie on the imaginary axis, the equilibrium becomes non-hyperbolic and it may undergo local bifurcations. Near a non-hyperbolic equilibrium the semiflow dynamics are essentially finite-dimensional by virtue of the existence of a smooth center manifold. On this invariant manifold the semiflow enjoys particularly good differentiability properties that facilitate our approach to normal form calculations in Chapter 3. ### 2.1 Semiflows generated by delay differential equations As it turns out, the space $C([-h,0],\mathbb{R}^n)$ by itself is not readily suitable for a semigroup approach to (DDE) as the function η encoding the particulars of the linear equation (2.1) appears explicitly in the *domain* of the generator of the semigroup one would like to study. This complicates the development of a perturbation theory for dealing with nonlinear problems. (See the remarks on the problem on p. 39 of [11] and in the introductory section of [7].) One way to resolve this difficulty is to make use of a general functional analytic perturbation framework known as sun-star calculus or dual perturbation theory. This approach allows us to treat DDE as bounded (in fact: finite rank) perturbations with values in a 'bigger' space, the so-called sun-star dual $X^{\odot\star}$ of the original state space X. As we will explain below, these perturbations enter additively in the action of a certain weak*-generator $A^{\odot\star}$ on $X^{\odot\star}$, leaving its domain untouched. The price one has to pay for thus enlarging one's state space vocabulary is a loss of strong continuity of the corresponding sun-star semigroup $T^{\odot\star}$, which we can however recover by taking a suitable restriction. We will now present the basic ideas and results in an abstract setting. For proofs of all the statements in this section we refer to Chapters II, III and VII and Appendix II.3 of [11]. For linear semigroup theory in general we refer to [13]. Let X be a Banach space, let $\mathcal{L}(X)$ be the space of bounded linear operators on X and let T be a strongly continuous (C_0) one-parameter semigroup on X with generator A having domain D(A). If X is non-reflexive, for instance when $X = C([-h, 0], \mathbb{R}^n)$, the adjoint semigroup T^* is in general only weak*-continuous on X^* and $(A^*, D(A^*))$ generates T^* merely in the weak*-sense. However, the set $$X^{\odot} := \{x^* \in X^* : t \mapsto T^*(t)x^* \text{ is norm-continuous } \}$$ is a norm-closed $T^*(t)$ -invariant subspace of X^* . In fact, one can prove that $$X^{\odot} = \bar{D(A^*)},\tag{2.2}$$ where the closure in the right-hand side is with respect to the norm of X^* . By construction the restriction T^{\odot} of T^* to X^{\odot} is strongly continuous. Moreover, one may prove that this restriction is exactly generated by the part of A^* in X^{\odot} which we denote by A^{\odot} , i.e. $$D(A^{\odot}) := \{ x^{\odot} \in D(A^*) : A^* x^{\odot} \in X^{\odot} \}, \qquad A^{\odot} x^{\odot} := A^* x^{\odot}.$$ At this stage we have a C_0 semigroup T^{\odot} on a Banach space X^{\odot} which is norm-generated by $(A^{\odot}, D(A^{\odot}))$. Therefore, we may play the same game once more. We obtain an adjoint semigroup $T^{\odot\star}$ on the dual space $X^{\odot\star}$ with weak*-generator $(A^{\odot\star},
D(A^{\odot\star}))$. The set $$X^{\odot\odot} := \{x^{\odot\star} \in X^{\odot\star} \,:\, t \mapsto T^{\odot\star}(t) x^{\odot\star} \text{ is norm-continuous } \}$$ is a norm-closed $T^{\odot\star}(t)$ -invariant subspace of $X^{\odot\star}$. One can prove that $$X^{\odot \odot} = D(\bar{A}^{\odot \star}), \tag{2.3}$$ where the closure is with respect to the norm in $X^{\odot \star}$. The restricted semigroup $T^{\odot \odot}$ is by construction strongly continuous and its generator is given by the part $A^{\odot \odot}$ of $A^{\odot \star}$ in $X^{\odot \odot}$, i.e. $$D(A^{\odot \odot}) := \{ x^{\odot \odot} \in D(A^{\odot \star}) : A^{\odot \star} x^{\odot \odot} \in X^{\odot \odot} \}, \qquad A^{\odot \odot} x^{\odot \odot} := A^{\odot \star} x^{\odot \odot}.$$ In this paper we will be concerned with the situation in which the spaces X and $X^{\odot \odot}$ can be identified with each other via the canonical embedding $j: X \to X^{\odot \star}$ given by $$\langle j(x), x^{\odot} \rangle := \langle x^{\odot}, x \rangle, \qquad \forall x \in X, \forall x^{\odot} \in X^{\odot}.$$ (2.4) When such an identification is possible (i.e. when j is onto $X^{\odot \odot}$) we shall say that X is sun-reflexive with respect to the semigroup T. **Remark 2.1.** In this paper we will omit the embedding j in our notation. For example, we shall write $X \subset X^{\odot \star}$ instead of $X^{\odot \odot} \subset X^{\odot \star}$ and $X = j^{-1}(X^{\odot \odot})$. The advantage of this choice is that our bifurcation formulas in Chapter 3 will look much cleaner, but the disadvantage is that the reader has to do his own bookkeeping-of-spaces. \Diamond One can show that there exists a unique C_0 semigroup T on $X = C([-h, 0], \mathbb{R}^n)$ which is in one-to-one correspondence with the solutions of (2.1). Let us assume that $x(\cdot, \phi) : [-h, \infty) \to \mathbb{R}^n$ is a solution of (2.1) with initial value $x_0 = \phi \in C([-h, 0], \mathbb{R}^n)$, then $$T(t)\phi = x_t(\cdot, \phi), \qquad t \ge 0.$$ (2.5) Conversely, for any initial value $\phi \in C([-h,0],\mathbb{R}^n)$ the function $x(\cdot,\phi):[-h,\infty)\to\mathbb{R}^n$ defined by $$x_0 := \phi, \qquad x(t,\phi) := (T(t)\phi)(0), \qquad \forall t \ge 0,$$ (2.6) is the unique solution of (DDE) with initial condition ϕ . The sun-star construction outlined above behaves particularly well with respect to perturbations in $B(X, X^{\odot *})$ of the weak*-generator $A^{\odot *}$ of the adjoint semigroup $T^{\odot *}$ on the 'big' space $X^{\odot *}$. Indeed, the domains $D(A^*)$ and $D(A^{\odot *})$ are the same for all linear equations (i.e. for all choices of η in (2.1)) and by (2.2) and (2.3) the same then holds for the spaces X^{\odot} and $X^{\odot \odot}$. In particular, $C([-h,0],\mathbb{R}^n)$ is sun-reflexive with respect to every linear DDE. In Table 2.1 we list explicit representations for the spaces X, X^*, X^{\odot} and $X^{\odot *}$ as well as the dual pairings between them, | space | representation | pairing | |------------------|---|--| | X | $\phi \in C([-h,0],\mathbb{R}^n)$ | $\langle f, \phi \rangle = \int_0^h df(\theta) \phi(-\theta)$ | | X^* | $f \in \mathrm{NBV}([0,h],\underline{\mathbb{R}}^n)$ | $\langle J, \varphi \rangle = \int_0^\infty dJ(\theta) \varphi(-\theta)$ | | X^{\odot} | $(c,g) \in \underline{\mathbb{R}}^n \times L^1([0,h],\underline{\mathbb{R}}^n)$ | $\langle (\alpha, \phi), (c, g) \rangle = c\alpha + \int_0^h g(\theta)\phi(-\theta) d\theta$ | | $X^{\odot\star}$ | $(\alpha, \phi) \in \mathbb{R}^n \times L^{\infty}([-h, 0], \mathbb{R}^n)$ | $\langle (\alpha, \phi), (c, g) \rangle = c\alpha + \int_0^\infty g(b)\phi(-b) db$ | | X | $\phi \in C([-h,0],\mathbb{R}^n)$ | $\langle (c,g), \phi \rangle = c\phi(0) + \int_0^h g(\theta)\phi(-\theta) d\theta$ | | X^{\odot} | $(c,g) \in \underline{\mathbb{R}}^n \times L^1([0,h],\underline{\mathbb{R}}^n)$ | $((c, g), \varphi) = c\varphi(0) + \int_0^{\infty} g(\theta)\varphi(-\theta) d\theta$ | **Table 2.1:** Representations for the abstract spaces X, X^*, X^{\odot} and $X^{\odot *}$ for the case of the semigroup T associated with the linear equation (2.1). The space \mathbb{R}^n is just \mathbb{R}^n , but in Chapter 3 it shall turn out to be convenient to regard its elements as *row* vectors instead of column vectors. Also indicated are the dual pairings that we will encounter in this manuscript. for the case that $X = C([-h, 0], \mathbb{R}^n)$ and T is the semigroup associated with (2.1). We will frequently use these pairings in Chapter 3. For the remainder of this chapter, let the spaces X, X^{\odot} etc. be as in Table 2.1. Using results from sun-star calculus one can also deal efficiently with perturbations of (2.1) of the form $$\dot{x}(t) = \int_0^h d\eta(\theta) x_t(-\theta) + G(x_t), \qquad t \ge 0.$$ (2.7) Such perturbations arise when studying stability of equilibria of (DDE) as in the next section. Here $G: X \to \mathbb{R}^n$ is assumed to be of class C^k for sufficiently high k and is supposed to satisfy $$G(0) = 0,$$ $DG(0) = 0.$ (2.8) Furthermore, for j = 1, ..., n let us denote by e_j the standard basis vectors of \mathbb{R}^n . Introduce the vectors $r_j^{\odot \star} \in X^{\odot \star}$ by putting $$r_j^{\odot \star} := (e_j, 0), \qquad j = 1, \dots, n.$$ Using this notation let us define a C^k -smooth mapping $R: X \to X^{\odot \star}$ by $$R(\phi) := \sum_{j=1}^{n} G_j(\phi) r_j^{\odot \star}. \tag{2.9}$$ (Note that the finite-dimensional range of R is contained in the linear span of the \mathbb{R}^n component of $X^{\odot \star}$. This is a special feature of DDE and renewal equations.) Finally, also note that it follows from our assumptions (2.8) on G that $$R(0) = 0,$$ $DR(0) = 0.$ (2.10) The kernel $\eta \in \text{NBV}([0, h], \mathbb{R}^n)$ defines a linear DDE. Let T be the corresponding semigroup of solution operators. Now consider the nonlinear abstract integral equation $$u(t) = T(t)\phi + \int_0^t T^{\odot \star}(t - \tau)R(u(\tau)) d\tau, \tag{AIE}$$ where $\phi \in X$ is given and the integral must be interpreted as a weak*-integral (with values in X), see Lemma III.2.1 and Interlude 3.13 of Appendix II in [11]. Solutions of (AIE) are by definition continuous functions $u:[0,t_+)\to X$. We recall our running assumption that it is always possible to take $t_+=\infty$. Analogous to the purely linear case, it can be shown that these solutions constitute a strongly continuous *nonlinear* semiflow on X (see Chapter VII of [11]) and that there is a one-to-one correspondence between solutions of (2.7) and solutions of (AIE). Namely, if $x(\cdot,\phi):[-h,\infty)\to\mathbb{R}^n$ solves (2.7) with initial condition $x_0=\phi$, then $$u(t,\phi) = x_t(\cdot,\phi), \qquad t \ge 0, \tag{2.11}$$ uniquely solves (AIE). Conversely, if $u(\cdot, \phi)$ is a solution of (AIE) then the function $x(\cdot, \phi)$: $[-h, \infty) \to \mathbb{R}^n$ defined by $$x_0 := \phi, \qquad x(t, \phi) := u(t, \phi)(0), \qquad \forall t \ge 0,$$ (2.12) uniquely solves (2.7) with initial condition ϕ . ### 2.2 Linearization and analysis near an equilibrium Let $\hat{\phi} \in X$ be a constant function. Suppose that $\bar{x} : [-h, \infty) \to \mathbb{R}^n$ satisfying $$\hat{x}_t = \hat{\phi}, \quad \forall t \ge 0,$$ is a stationary solution of (DDE), i.e. $F(\hat{\phi}) = 0$. By a change of coordinates it can always be arranged that $\hat{\phi} = 0$. We can then write (DDE) in the form (2.7) satisfying conditions (2.8). Namely, $$\dot{x}(t) = DF(0)x_t + (F(x_t) - DF(0)x_t)$$ $$= \int_0^h d\eta(\theta)x_t(-\theta) + (F(x_t) - DF(0)x_t),$$ (2.13) where $DF(0) \in \mathcal{L}(X, \mathbb{R}^n)$ denotes the Fréchet derivative of F, evaluated at the point $0 \in X$ and η denotes its $NBV([0, h], \mathbb{R}^n)$ representation, $$DF(\hat{\phi})\phi = \int_0^h d\eta(\theta)\phi(-\theta), \quad \forall \phi \in X.$$ (2.14) Here the integral to the right is again a Riemann-Stieltjes integral. The nonlinearity R from (2.9) becomes $$R(\phi) = \sum_{j=1}^{n} (F(\phi) - DF(0)\phi)_{j} r_{j}^{\odot \star}.$$ (2.15) We would like to have an instrument to decide about stability of the origin as an equilibrium of the nonlinear semiflow associated with (2.13). Recall from the previous section that this semiflow corresponds to the solution of (AIE) with T the strongly continuous solution of the linear DDE defined by η . Let A be the generator of the semigroup T. If its spectrum $\sigma(A)$ does not contain any purely imaginary points, then the question of stability of the equilibrium is answered by the location of $\sigma(A)$ in the complex plane. This is formalized in the Principle of Linearized Stability for DDE, see Theorem VII.6.8 of [11]. Remark 2.2. As soon as spectral theory is applied to the analysis of a real-valued problem, one should complexify all spaces involved, as well as the operators acting on them. For the sun-star framework introduced in the previous section this is not a trivial task. It has however been carried out in detail in [11, \S III.7] and that is why until \S 3.4 we refrain from discussing this issue. We do not expect this omission to cause the reader major difficulties. \diamondsuit In order to find $\sigma(A)$ it is not necessary to work with the generator A directly. Indeed, there exists a holomorphic matrix-valued function, called the **characteristic matrix**, from which all spectral information can be obtained. The following theorem summarizes what we will need. The proofs of the statements given can be found in Chapter IV of [11]. One can exploit the fact that, although A itself is unbounded, for *finite* delays h > 0 its resolvent $(zI - A)^{-1}$ is a compact operator on X, for which the non-zero spectrum consists of isolated
eigenvalues only. For an introduction to the spectral theory of closed linear operators see Chapter V of [36] and Chapter IV.1 of [13]. A point $\lambda \in \sigma(A)$ is called an **eigenvalue of finite type** if it is an isolated point of $\sigma(A)$ and its algebraic multiplicity is finite, see the definitions on p. 96 of [11]. **Theorem 2.3.** Let A be the generator of the semigroup T corresponding to the linear part of (2.13). $i \ \sigma(A) = \sigma(A^*) = \sigma(A^{\odot}) = \sigma(A^{\odot *})$. These spectra consist solely of eigenvalues of finite type. ii The matrix-valued function $\Delta: \mathbb{C} \to \mathbb{C}^{n \times n}$ defined by $$\Delta(z) := zI - \int_0^h e^{-z\theta} d\eta(\theta)$$ (2.16) is holomorphic, and $\lambda \in \sigma(A)$ if and only if $\det \Delta(\lambda) = 0$. In that case the order of λ as a root of $\det \Delta$ equals the algebraic multiplicity of λ as an eigenvalue and the dimension of the nullspace $N[\Delta(\lambda)]$ is equal to the geometric multiplicity of λ as an eigenvalue. Finally, the (generalized) eigenspaces corresponding to λ are given by the nullspaces $$N[(\lambda I - A)^{k_{\lambda}}] = N[(\lambda I - A^{\odot \star})^{k_{\lambda}}]$$ and $N[(\lambda I - A^{*})^{k_{\lambda}}] = N[(\lambda I - A^{\odot})^{k_{\lambda}}],$ where k_{λ} is the order of λ as a pole of $z \mapsto \Delta(z)^{-1}$. The transcendental equation $\det \Delta(z) = 0$ is known as the **characteristic equation**. In all but the simplest cases, finding eigenvalues by locating its roots requires numerical analysis. When bifurcations involve different eigenvalues (such is the case for e.g. the fold-Hopf and the double Hopf bifurcation), we are required to calculate pairings of the sort (2.18) with ϕ^{\odot} and ϕ pertaining to different eigenvalues. The following lemma shows that such pairings always vanish. **Lemma 2.4.** Let λ and μ be eigenvalues of A, with $\lambda \neq \mu$. Let ϕ_{λ} be an eigenvector of A corresponding to λ and let ϕ_{μ}^{\odot} be an eigenvector of A^* corresponding to μ . Then $\langle \phi_{\mu}^{\odot}, \phi_{\lambda} \rangle = 0$. *Proof.* Since $\lambda \neq \mu$ we may assume that either $\lambda \neq 0$ or $\mu \neq 0$. In the first case $\phi_{\lambda} = \frac{1}{\lambda} A \phi_{\lambda}$ so $$\langle \phi_{\mu}^{\odot}, \phi_{\lambda} \rangle = \frac{1}{\lambda} \langle \phi_{\mu}^{\odot}, A \phi_{\lambda} \rangle = \frac{1}{\lambda} \langle A^{*} \phi_{\mu}^{\odot}, \phi_{\lambda} \rangle = \frac{\mu}{\lambda} \langle \phi_{\mu}^{\odot}, \phi_{\lambda} \rangle,$$ and therefore $\langle \phi_{\mu}^{\odot}, \phi_{\lambda} \rangle = 0$. The case $\mu \neq 0$ is identical. In addition to knowledge about the eigenvalues we will also require the corresponding eigenvectors. These, too, can be obtained from the characteristic matrix. We do not need a systematic result, but merely treat the special cases when $\lambda \in \sigma(A)$ is simple (i.e. of algebraic multiplicity one, for cusp, generalized Hopf, fold-Hopf and double Hopf points) or when λ is a double eigenvalue (for Bogdanov-Takens points). We remark that Theorem 2.3 provides a simple criterion for calculating algebraic and geometric multiplicities of a given eigenvalue. Therefore, it is easy to check which one of the next two subsections applies in a concrete case. #### 2.2.1 The case of a simple eigenvalue Please note carefully that for ϕ^{\odot} presented below we have used the representation of X^{\odot} given in Table 2.1. **Lemma 2.5.** Let λ be a simple eigenvalue of A. If the non-zero column vector q is a right null vector of $\Delta(\lambda)$ (i.e. $\Delta(\lambda)q = 0$) then $$\phi = (\theta \mapsto e^{\lambda \theta} q) \tag{2.17}$$ is an eigenvector of A corresponding to λ . Furthermore, if the non-zero row vector p is a left null vector of $\Delta(\lambda)$ (i.e. $p\Delta(\lambda) = 0$) then $$\phi^{\odot} = \left(p, \theta \mapsto p \int_{\theta}^{h} e^{\lambda(\theta - s)} d\eta(s)\right)$$ is an eigenvector of A^* corresponding to λ . Finally, $$\langle \phi^{\odot}, \phi \rangle = p\Delta'(\lambda)q \neq 0,$$ (2.18) where $\Delta'(\lambda)$ denotes the derivative of $z \mapsto \Delta(z)$ at $z = \lambda$. *Proof.* The statements are identical to or follow directly from Theorems IV.5.5 and IV.5.9 (eigenvector for A and A^* , respectively) and Corollary 5.12 (the identity (2.18) for their pairing) in [11]. The expression (2.18) will be used frequently in Chapter 3 to achieve a mutual normalization of (adjoint) eigenvectors. Note that for $\phi^{\odot} \in X^{\odot}$ we employed the representation for elements in X^{\odot} given in Table 2.1. #### 2.2.2 The case of a double eigenvalue Next, we turn to the case of a double eigenvalue. Of course we have in mind an application to the Bogdanov-Takens bifurcation treated in §3.5.2, but some of the definitions and results below are relevant in a more general setting. **Definition 2.6.** A sequence of column vectors $q_0, q_1, \ldots, q_{k-1}$ in \mathbb{R}^n is called a **right Jordan** chain for Δ at λ if $q_0 \neq 0$ and $$\Delta(z)(q_0 + (z - \lambda)q_1 + \ldots + (z - \lambda)^{k-1}q_{k-1}) = O((z - \lambda)^k) \quad \text{as } z \to \lambda.$$ The number k is called the **rank** of the chain. Similarly, a sequence of row vectors p_0, \ldots, p_{k-1} in \mathbb{R}^n is called a **left Jordan chain** for Δ at λ if $p_0 \neq 0$ and $$(p_{k-1} + (z - \lambda)p_{k-2} + \ldots + (z - \lambda)^{k-1}p_0)\Delta(z) = O((z - \lambda)^k)$$ as $z \to \lambda$. Although the above definition is quite usable for hand calculations, we remark that Exercise IV.5.11 in [11] presents a way to calculate Jordan chains from the zero-eigenvectors of a matrix whose entries involve derivatives of $\Delta(z)$ at $z = \lambda$. This method may be preferable for computer implementations. Suppose that λ is a double eigenvalue of A of geometric multiplicity one. It is straightforward to verify that there exists an eigenvector $\phi_0 \in D(A)$ and a generalized eigenvector $\phi_1 \in D(A)$ such that $$A\phi_0 = \lambda\phi_0, \qquad A\phi_1 = \lambda\phi_1 + \phi_0.$$ Also, there exists an eigenvector $\phi_1^{\odot} \in D(A^*)$ and a generalized eigenvector $\phi_0^{\odot} \in D(A^*)$ such that $$A^*\phi_1^{\odot} = \lambda \phi_1^{\odot}, \qquad A^*\phi_0^{\odot} = \lambda \phi_0^{\odot} + \phi_1^{\odot}.$$ As for Lemma 2.5 we note that in the expressions for $\phi_{1,0}^{\odot}$ below we have used the representation of X^{\odot} given in Table 2.1. **Lemma 2.7.** Let λ be an eigenvalue of A with geometric multiplicity one and algebraic multiplicity two. Let $\{q_0, q_1\} \in \mathbb{R}^n$ and $\{p_1, p_0\} \in \mathbb{R}^n$ be rank-two right and left Jordan chains of Δ at λ . Then $$\phi_0 = (\theta \mapsto e^{\lambda \theta} q_0)$$ and $\phi_1 = (\theta \mapsto e^{\lambda \theta} (\theta q_0 + q_1))$ are an eigenvector and a generalized eigenvector for A corresponding to λ and $$\phi_1^{\odot} = \left(p_1, \theta \mapsto p_1 \int_{\theta}^h e^{\lambda(\theta - s)} d\eta(s) \right),$$ $$\phi_0^{\odot} = \left(p_0, \theta \mapsto p_0 \int_{\theta}^h e^{\lambda(\theta - s)} d\eta(s) + p_1 \int_{\theta}^h e^{\lambda(\theta - s)} (\theta - s) d\eta(s) \right),$$ are an eigenvector and a generalized eigenvector for A^* corresponding to λ . Moreover, the following identities hold: $$\langle \phi_0^{\odot}, \phi_0 \rangle = p_0 \Delta'(\lambda) q_0 + \frac{1}{2!} p_1 \Delta''(\lambda) q_0, \tag{2.19a}$$ $$\langle \phi_1^{\odot}, \phi_1 \rangle = p_1 \Delta'(\lambda) q_1 + \frac{1}{2!} p_1 \Delta''(\lambda) q_0, \tag{2.19b}$$ $$\langle \phi_1^{\odot}, \phi_0 \rangle = p_1 \Delta'(\lambda) q_0,$$ (2.19c) $$\langle \phi_0^{\odot}, \phi_1 \rangle = p_0 \Delta'(\lambda) q_1 + \frac{1}{2!} p_0 \Delta''(\lambda) q_0 + \frac{1}{2!} p_1 \Delta''(\lambda) q_1 + \frac{1}{3!} p_1 \Delta'''(\lambda) q_0. \tag{2.19d}$$ Here $\Delta'(\lambda), \Delta''(\lambda)$ and $\Delta'''(\lambda)$ are derivatives of orders one to three of $\Delta(z)$ at $z = \lambda$. *Proof.* The formulas for the (generalized) eigenvectors can be found from Theorems IV.5.5 and IV.5.9 in [11]. The expressions for the pairings in (2.19) are new, except for (2.19c) which is just the same as (2.18). As an example, let us prove (2.19d). From (2.16) we infer that $$\Delta'(\lambda) = I + \int_0^h s e^{-\lambda s} d\eta(s),$$ $$\Delta''(\lambda) = -\int_0^h s^2 e^{-\lambda s} d\eta(s),$$ $$\Delta'''(\lambda) = \int_0^h s^3 e^{-\lambda s} d\eta(s).$$ Using the pairing between X^{\odot} and X in the lower right cell of Table 2.1, we compute $$\langle \phi_0^{\odot}, \phi_1 \rangle = p_0 q_1 + \int_0^h p_0 \int_{\theta}^h e^{\lambda(\theta - s)} d\eta(s) (-\theta) e^{-\lambda \theta} q_0 d\theta$$ $$+ \int_0^h p_0 \int_{\theta}^h e^{\lambda(\theta - s)} d\eta(s) e^{-\lambda \theta} q_1 d\theta$$ $$+ \int_0^h p_1 \int_{\theta}^h e^{\lambda(\theta - s)} (\theta - s) d\eta(s) (-\theta) e^{-\lambda \theta} q_0 d\theta$$ $$+ \int_0^h p_1 \int_{\theta}^h e^{\lambda(\theta - s)} (\theta - s) d\eta(s) e^{-\lambda \theta} q_1 d\theta$$ $$= p_0 q_1 + I_1 + I_2 + I_3 + I_4,$$ $$(2.20)$$ where the I_i correspond to the four appearing double integrals, in that order. We deal with each of them separately, but the computations are very similar. To start, we find using Fubini's theorem, $$I_{1} = p_{0} \int_{0}^{h} \int_{\theta}^{h} (-\theta)e^{-\lambda s} d\eta(s) d\theta q_{0} = p_{0} \int_{0}^{h} \int_{0}^{s} (-\theta)e^{-\lambda s} d\theta d\eta(s) q_{0}$$ $$= p_{0} \int_{0}^{h} \int_{0}^{s} (-\theta) d\theta e^{-\lambda s} d\eta(s) q_{0} = -\frac{1}{2} p_{0} \int_{0}^{h} s^{2} e^{-\lambda s} d\eta(s) q_{0} = \frac{1}{2} p_{0} \Delta''(\lambda) q_{0}.$$ For I_2 we obtain $$I_{2}
= p_{0} \int_{0}^{h} \int_{\theta}^{h} e^{-\lambda s} d\eta(s) d\theta q_{1} = p_{0} \int_{0}^{h} \int_{0}^{s} e^{-\lambda s} d\theta d\eta(s) q_{1}$$ $$= p_{0} \int_{0}^{h} \int_{0}^{s} d\theta e^{-\lambda s} d\eta(s) q_{1} = p_{0} \int_{0}^{h} s e^{-\lambda s} d\eta(s) q_{1} = p_{0} \Delta'(\lambda) q_{1} - p_{0} q_{1},$$ and for I_3 we get $$I_{3} = p_{1} \int_{0}^{h} \int_{\theta}^{h} e^{-\lambda s} (\theta - s)(-\theta) d\eta(s) d\theta q_{0} = p_{1} \int_{0}^{h} \int_{0}^{s} e^{-\lambda s} (\theta - s)(-\theta) d\theta d\eta(s) q_{0}$$ $$= p_{1} \int_{0}^{h} \int_{0}^{s} (\theta - s)(-\theta) d\theta e^{-\lambda s} d\eta(s) q_{0} = \frac{1}{6} p_{1} \int_{0}^{h} s^{3} e^{-\lambda s} d\eta(s) q_{0} = \frac{1}{6} p_{1} \Delta'''(\lambda) q_{0},$$ and, at last, $$I_4 = p_1 \int_0^h \int_\theta^h e^{-\lambda s} (\theta - s) \, d\eta(s) \, d\theta q_1 = p_1 \int_0^h \int_0^s e^{-\lambda s} (\theta - s) \, d\theta \, d\eta(s) q_1$$ $$= p_1 \int_0^h \int_0^s (\theta - s) \, d\theta e^{-\lambda s} \, d\eta(s) q_1 = -\frac{1}{2} p_1 \int_0^h s^2 e^{-\lambda s} \, d\eta(s) q_1 = \frac{1}{2} p_1 \Delta''(\lambda) q_1.$$ Substituting these results into (2.20) then yields (2.19d). By induction one verifies that identities such as those in (2.19) hold more generally, i.e. pairings may be expressed as appropriately truncated series involving derivatives of $z \mapsto \Delta(z)$ as well as right and left Jordan chains for Δ at λ . Since we do not have any need for such results in this paper, we refrain from stating them explicitly. In order to calculate the critical normal form for the Bogdanov-Takens bifurcation, it is important that we are able to mutually normalize the (generalized) eigenvectors appearing in Lemma 2.7. First we give a general result, also see [26, App. A] for the finite dimensional case, which is formally identical. As a consequence of this result and Lemma 2.7, we then obtain an algorithm to effectuate the required normalization. **Lemma 2.8.** Let $L: D(L) \subseteq E \to E$ be a closed, densely defined linear operator on a complex Banach space E. Let $\lambda \in \mathbb{C}$ be a pole of the resolvent map of geometric (algebraic) multiplicity one (two) and suppose that $\phi_{0,1}$ and $\phi_{1,0}^*$ are corresponding (generalized) eigenvectors of L and L^* , $$L\phi_0 = \lambda\phi_0, \qquad L\phi_1 = \lambda\phi_1 + \phi_0, \qquad L^*\phi_1^* = \lambda\phi_1^*, \qquad L^*\phi_0^* = \lambda\phi_0^* + \phi_1^*.$$ Then it holds that $$\langle \phi_0^*, \phi_0 \rangle = \langle \phi_1^*, \phi_1 \rangle \neq 0. \tag{2.21}$$ Moreover, the vectors $$\psi_0 := \frac{1}{\langle \phi_0^*, \phi_0 \rangle} \phi_0, \qquad \psi_1 := \frac{1}{\langle \phi_1^*, \phi_1 \rangle} \phi_1,$$ are an eigenvector and a generalized eigenvector of L corresponding to λ , while the vectors $$\psi_1^* := \phi_1^*, \qquad \psi_0^* := \phi_0^* - \frac{\langle \phi_0^*, \phi_1 \rangle}{\langle \phi_1^*, \phi_1 \rangle} \phi_1^*,$$ are an eigenvector and a generalized eigenvector of L^* corresponding to λ . These vectors satisfy the 'biorthogonality' condition¹ $$\langle \psi_i^*, \psi_j \rangle = \delta_{ij}, \qquad i, j = 0, 1. \tag{2.22}$$ *Proof.* According to [36, $\S V.10$] we may decompose E as $$E = N[(\lambda - L)^2] \oplus N[(\lambda - L^*)^2]^{\perp}.$$ We start by noting that $$\langle \phi_1^*, \phi_0 \rangle = \langle \phi_1^*, L\phi_1 - \lambda\phi_1 \rangle = \lambda \langle \phi_1^*, \phi_1 \rangle - \lambda \langle \phi_1^*, \phi_1 \rangle = 0. \tag{2.23}$$ Next, we observe that $\phi_0 \notin N[(\lambda - L^*)^2]^{\perp}$. By (2.23) and the fact that $N[(\lambda - L^*)^2]$ is spanned by ϕ_0^* and ϕ_1^* this implies that $\langle \phi_0^*, \phi_0 \rangle \neq 0$. Furthermore, $$\langle \phi_1^*, \phi_1 \rangle = \langle L^* \phi_0^* - \lambda \phi_0^*, \phi_1 \rangle = \langle \phi_0^*, L \phi_1 \rangle - \lambda \langle \phi_0^*, \phi_1 \rangle = \langle \phi_0^*, \lambda \phi_1 + \phi_0 \rangle - \lambda \langle \phi_0^*, \phi_1 \rangle = \langle \phi_0^*, \phi_0 \rangle,$$ which proves (2.21). It is easy to check that, for any non-zero $\kappa \in \mathbb{C}$, the vectors $\kappa \phi_0$ and $\kappa \phi_1$ are an eigenvector and a generalized eigenvector of L corresponding to λ . Also, since ϕ_1^* and ϕ_0^* are linearly independent, follows that for any $\delta \in \mathbb{C}$ the vectors ϕ_1^* and $\phi_0^* + \delta \phi_1^*$ are an eigenvector and a generalized eigenvector of L^* corresponding to λ . ¹Here and in the remainder we will use quotes since of course the pairing $\langle \cdot, \cdot \rangle$ does not derive from an inner product. It remains to verify (2.22). As in (2.23) one sees that $\langle \psi_1^*, \psi_0 \rangle = 0$. It is immediate that $\langle \psi_0^*, \psi_0 \rangle = \langle \psi_1^*, \psi_1 \rangle = 1$. Finally, $$\langle \psi_0^*, \psi_1 \rangle = \langle \phi_0^* - \frac{\langle \phi_0^*, \phi_1 \rangle}{\langle \phi_1^*, \phi_1 \rangle} \phi_1^*, \frac{1}{\langle \phi_0^*, \phi_0 \rangle} \phi_1 \rangle = \frac{\langle \phi_0^*, \phi_1 \rangle}{\langle \phi_0^*, \phi_0 \rangle} - \frac{\langle \phi_0^*, \phi_1 \rangle}{\langle \phi_1^*, \phi_1 \rangle} \cdot \frac{\langle \phi_1^*, \phi_1 \rangle}{\langle \phi_0^*, \phi_0 \rangle} = 0,$$ which establishes (2.22). Now let λ and the vectors $q_{0,1}$ and $\phi_{0,1}$ as well as $p_{1,0}$ and $\phi_{1,0}^{\odot}$ be as in Lemma 2.7. A simple computation shows that upon application of Lemma 2.8 with $E = X = C([-h, 0]; \mathbb{C}^n)$ and L = A we obtain $$\psi_0 = (\theta \mapsto e^{\lambda \theta} \tilde{q}_0), \qquad \psi_1 = (\theta \mapsto e^{\lambda \theta} (\theta \tilde{q}_0 + \tilde{q}_1)), \tag{2.24}$$ for the normalized (generalized) eigenvectors of A corresponding to λ , while $$\psi_1^{\odot} = \left(\tilde{p}_1, \theta \mapsto \tilde{p}_1 \int_{\theta}^{h} e^{\lambda(\theta - s)} d\eta(s)\right), \psi_0^{\odot} = \left(\tilde{p}_0, \theta \mapsto \tilde{p}_0 \int_{\theta}^{h} e^{\lambda(\theta - s)} d\eta(s) + \tilde{p}_1 \int_{\theta}^{h} e^{\lambda(\theta - s)} (\theta - s) d\eta(s)\right),$$ (2.25) are the normalized (generalized) eigenvectors of A^* corresponding to λ , where $$\tilde{q}_0 := \frac{1}{\langle \phi_0^{\odot}, \phi_0 \rangle} q_0, \qquad \tilde{q}_1 := \frac{1}{\langle \phi_1^{\odot}, \phi_1 \rangle} q_1, \qquad \tilde{p}_1 := p_1, \qquad \tilde{p}_0 := p_0 - \frac{\langle \phi_0^{\odot}, \phi_1 \rangle}{\langle \phi_1^{\odot}, \phi_1 \rangle} p_1,$$ and (2.21) holds. Hence in terms of the quantities $$\kappa(p,q) := \left[p_0 \Delta'(\lambda) q_0 + \frac{1}{2!} p_1 \Delta''(\lambda) q_0 \right]^{-1} = \left[p_1 \Delta'(\lambda) q_1 + \frac{1}{2!} p_1 \Delta''(\lambda) q_0 \right]^{-1},$$ (2.26) and $$\delta(p,q) := -\kappa(p,q) \left[p_0 \Delta'(\lambda) q_1 + \frac{1}{2!} p_0 \Delta''(\lambda) q_0 + \frac{1}{2!} p_1 \Delta''(\lambda) q_1 + \frac{1}{3!} p_1 \Delta'''(\lambda) q_0 \right], \tag{2.27}$$ we have $$\tilde{q}_0 = \kappa(p, q)q_0, \qquad \tilde{q}_1 = \kappa(p, q)q_1, \tag{2.28}$$ and $$\tilde{p}_1 = p_1, \qquad \tilde{p}_0 = p_0 + \delta(p, q)p_1.$$ (2.29) We summarize this in **Proposition 2.9.** Let λ and $q_{0,1}$ and $p_{1,0}$ be as in Lemma 2.7. Then the quantities $\kappa(p,q)$ and $\delta(p,q)$ are well-defined (i.e. finite) by (2.26) and (2.27). The vectors ψ_0 and ψ_1 given by (2.24) with $\tilde{q}_{0,1}$ as in (2.28) are an eigenvector and a generalized eigenvector of A corresponding to λ . Likewise, ψ_1^{\odot} and ψ_0^{\odot} given by (2.25) with $\tilde{p}_{1,0}$ as in (2.29) are an eigenvector and a generalized eigenvector of A^* corresponding to λ . Moreover, these vectors have the property that $$\langle \psi_i^{\odot}, \psi_i \rangle = \delta_{ii}, \qquad i, j = 0, 1.$$ (2.30) We point out that the above proposition has reduced the task of finding (generalized) eigenvectors of A and A^* satisfying the normalization condition (2.30) to a matter of (finite-dimensional) linear algebra. This is in line with the other results in this section. #### 2.3 The center manifold We suppose that $0 \in X$ is an equilibrium of (DDE) and we return to the splitting (2.13), $$\dot{x}(t) = \int_0^h d\eta(\theta) x_t(-\theta) + (F(x_t) - DF(0)x_t). \tag{2.31}$$ In this section we will be concerned with the case of a non-hyperbolic equilibrium, i.e. $$\sigma(A) \cap i\mathbb{R} \neq \emptyset. \tag{2.32}$$ Here $i\mathbb{R}$ denotes the imaginary axis in the complex plane and A is the generator of the semigroup T solving the linear DDE defined by η . The proof of existence of a smooth center manifold for DDE is more subtle than the corresponding proof for the ODE case, but the essential ideas are the same. Let the **center subspace** $X_0 \subset X$ be defined as the direct sum $$X_0 = \bigoplus \{ \mathcal{M}_{\lambda} : \lambda \in \sigma(A) \cap i\mathbb{R} \}.$$ Here \mathcal{M}_{λ} is the generalized eigenspace corresponding to λ . By the first statement of Theorem 2.3 the sum contains only a finite number of finite-dimensional terms. Consequently X_0 is finite-dimensional. Let $P_0 \in \mathcal{L}(X)$ be the spectral projector of X onto X_0 and denote its extension to $X^{\odot \star}$ with range X_0 by $P_0^{\odot \star} \in \mathcal{L}(X^{\odot \star}, X)$. Remark 2.10. The subspace X_0 is spanned by a basis consisting of (generalized) eigenvectors of A corresponding to eigenvalues on the imaginary axis. It is this basis, available explicitly for the cases of our interest from Lemmas 2.5 and 2.7 above, that we shall use in Chapter 3 as a coordinate system with respect to which we express the dynamics of y generated by (2.35) below. Now let $\xi: \mathbb{R}_+ \to \mathbb{R}$ be a C^{∞} -smooth cut-off function with the properties $$\xi(s) \in \begin{cases} \{1\}, & 0 \le s \le 1, \\
[0,1], & 1 \le s \le 2, \\ \{0\}, & 2 \le s. \end{cases}$$ (2.33) Define, for any $\delta > 0$, the **modified nonlinearity** $R_{\delta}: X \to X^{\odot \star}$ by $$R_{\delta}(\phi) := R(\phi) \, \xi\left(\frac{\|P_0\phi\|}{\delta}\right) \, \xi\left(\frac{\|(I - P_0)\phi\|}{\delta}\right),\tag{2.34}$$ where R is given by (2.15). For any $\phi \in X$ denote by $u_{\delta}(\cdot, \phi)$ the solution of (AIE, $R = R_{\delta}$). (The modification of the nonlinearity is necessary to overcome certain technical difficulties related to non-invariance of spaces of continuous functions with limited exponential growth under the so-called substitution (or: Nemytskii) operator associated with R. For a detailed explanation we refer to Chapter IX of [11].) **Theorem 2.11.** For $\delta > 0$ sufficiently small there exists a C^k -smooth injection $\mathcal{C}_{\delta} : X_0 \to X$ such that its image $\mathcal{C}_{\delta}(X_0)$, called the **global center manifold** or **center manifold** for short and denoted by \mathcal{W}_{δ}^c , has the following properties: - i W_{δ}^{c} is conditionally locally forward-invariant, in the following sense. If $\phi \in X_{0}$ and $\sup\{\|u_{\delta}(t,\mathcal{C}_{\delta}(\phi))\| : t \in [0,T]\} \leq \delta$ then $u_{\delta}(t,\mathcal{C}_{\delta}(\phi)) = \mathcal{C}_{\delta}(P_{0}u_{\delta}(t,\mathcal{C}_{\delta}(\phi)))$ for all $t \in [0,T]$. - ii W_{δ}^c contains all solutions of (AIE, $R = R_{\delta}$) that are defined for all time and satisfy $\sup\{\|u_{\delta}(t,\psi)\|: t \in \mathbb{R}\} \leq \delta$. - iii W_{δ}^{c} contains the origin since $C_{\delta}(0) = 0$ and it is tangent to X_{0} there, i.e. $DC_{\delta}(0)\phi = \phi$ for all $\phi \in X_{0}$. - iv If $\psi \in \mathcal{W}_{\delta}^{c}$ and $u_{\delta}(\cdot, \psi)$ exists for all time, then $y(t) := P_{0}u_{\delta}(t, \psi) \in X_{0}$ satisfies the ordinary differential equation $$\dot{y}_{\delta}(t) = Ay_{\delta}(t) + P_{0}^{\odot \star} R_{\delta}(\mathcal{C}_{\delta}(y_{\delta}(t))), \qquad \forall t \in \mathbb{R}.$$ (2.35) Proof. The construction of the center manifold is carried out by the Perron-Frobenius method, exploiting the variation-of-constants formula (AIE, $R = R_{\delta}$) to define an appropriate fixed-point operator. Statement one to three are Theorem IX.5.3 and (regarding the tangency) Corollary IX.7.10 in [11]. Establishing C^k -smoothness of \mathcal{C} requires work: See §IX.7 there. One may alternatively exploit the fact that for DDE the nonlinearity takes values in a finite-dimensional subspace of $X^{\odot \star}$ to arrive at a smooth (as opposed to merely Lipschitz) modified nonlinearity. As far as the last statement is concerned, projection of (AIE, $R = R_{\delta}$) onto X_0 readily leads to (2.35), see §IX.8. #### Remark 2.12. The following two remarks will be of relevance in Chapter 3. (i) It is important to realize that W_{δ}^{c} is a global center manifold for the solution of (AIE, $R = R_{\delta}$) which involves the modified nonlinearity. When calculating local normal forms in Chapter 3, we will be interested in the dynamics of this solution in a small neighbourhood of zero in X. From item (i) of the previous theorem we see that solutions that start on the center manifold will remain on it in forward time as long as they stay in the ball $B_{\delta}(0)$ of radius δ centered at the origin. Item (ii) tells us that the center manifold captures all solutions that exist and remain in $B_{\delta}(0)$ for all time, such as small periodic and homo- or heteroclinic orbits. As long as a solution stays in $B_{\delta}(0)$ one sees from (2.33) and (2.34) that the modification of the nonlinearity becomes immaterial. Furthermore, for such solutions (2.35) reduces to $$\dot{y}(t) = Ay(t) + P_0^{\odot \star} R(\mathcal{C}_{\delta}(y(t))), \qquad \forall t \in \mathbb{R},$$ (2.36) with a right-hand side that is C^k -smooth in y. When it is clear from the context that we are only interested in the local dynamics of solutions (i.e. the dynamics in $B_{\delta}(0)$), we will write \mathcal{W}^c and \mathcal{C} instead of \mathcal{W}^c_{δ} and \mathcal{C}_{δ} . (ii) If $\sigma(A)$ does not contain points in the open right half-plane, then \mathcal{W}_{δ}^{c} is conditionally locally exponentially stable. This implies that if a solution of (2.36) that lies in $B_{\delta}(0)$ for all time is locally exponentially stable within \mathcal{W}^{c} , then it is locally exponentially stable in X. It are these properties that make the center manifold a very useful tool for the analysis of equilibria of DDE. \Diamond We need the following counterpart to (2.35) on the center manifold. **Proposition 2.13.** Let $\psi \in W^c$ and suppose that the solution $t \mapsto u(t, \psi)$ of (AIE) exists as a map from \mathbb{R} to X and lies in $B_{\delta}(0)$ for all $t \in \mathbb{R}$. Then $u(t, \psi) \in W^c$ for all $t \in \mathbb{R}$ and $u(t, \psi)$ is differentiable with respect to t and satisfies $$\frac{du(t,\psi)}{dt} = A^{\odot \star} u(t,\psi) + R(u(t,\psi)), \qquad \forall t \in \mathbb{R}$$ (2.37) *Proof.* Note that in the formulation of the above proposition we employ the convention put forward in the last sentence of item (i) of Remark 2.12. The first part repeats item (ii) of Theorem 2.11. The differential equation (2.37) on the center manifold follows directly from the differential equation (2.35) on the center subspace and the fact that the center manifold consists of smooth functions, i.e. functions that are at least continuously differentiable. Note that we cannot replace $A^{\odot \star}$ by A in (2.37), since although we know that the left-hand side must be in X, the same cannot be said of $R(u(t, \psi))$. ## Chapter 3 # Codimension-two critical normal forms The primary advantage of the existence of a center manifold for a non-hyperbolic equilibrium of a DDE is that it enables 'lifting' of local bifurcation theory from the finite-dimensional ODE-setting to the infinite-dimensional setting of DDE. Indeed, solutions of a DDE that remain in the vicinity of such an equilibrium for all (positive and negative) time satisfy a finite-dimensional differential equation, as we saw in §2.3. Examples of application of this principle are the proof of the Hopf bifurcation theorem for DDE in Chapter X of [11] and its analogue for renewal equations in Theorem 2.21 of [7]. In this chapter we discuss an approach which goes back to Coullet and Spiegel [3] and was applied by Kuznetsov in [24] to obtain explicit expressions for the critical normal form coefficients for all generically occurring codimension-one and codimension-two bifurcations of equilibria in ODE, also see [25, §8.7]. The difference between this and other approaches is essentially twofold. Firstly, the method does not require a preliminary reduction to the center manifold but rather solves for the critical normal form and center manifold coefficients simultaneously. Secondly, as we shall see in this chapter, the expressions obtained for the normal form coefficients involve numerically accessible data, rendering them suitable for symbolic as well as numerical evaluation. Indeed, their ODE counterparts are implemented in the packages CONTENT [27] and MATCONT [6] for continuation and bifurcation analysis of ODE. As part of his thesis [29] Meijer applied the method to iterated maps and implemented the results in a command-line version of MATCONT for maps. In §3.1 we start with a worked-out example to illustrate the method in the context of DDE. We shall discuss normalization for the Cusp bifurcation, which is the simplest of all codimension-two cases. However, it includes the essential steps involved in the general method. During the discussion it will become clear which mathematical ingredients are needed in order to proceed with our derivations and arrive at our goal: An expression for the cubic normal form coefficient at criticality. In §3.2 we provide these ingredients by formulating a few results on solvability of linear operator equations and the bordered operator matrix approach to dealing with under-determined systems. The basic concepts are well-known and not difficult, but when specific DDE-related results are presented, we give detailed proofs. In §3.3 we briefly return to our initial example. Our discussion that started in §3.1 can now be concluded with the help of the results derived in §3.2. In §3.4 we list expressions for the relevant critical normal form coefficients for the Bogdanov-Takens, generalized Hopf, fold-Hopf and double Hopf bifurcations. In the remainder of this chapter all the spaces X, X^{\odot} etc. are as in Table 2.1. ### 3.1 The method by example: Cusp bifurcation We recall the setting of §2.3. Suppose that the zero-function is a stationary solution of (DDE) and write this equation as (2.31), $$\dot{x}(t) = \int_0^h d\eta(\theta) x_t(-\theta) + G(x_t) \tag{3.1}$$ where $G: X \to \mathbb{R}^n$ is a C^k -smooth function defined by $G(\phi) := F(\phi) - DF(0)\phi$ and satisfying $$G(0) = 0,$$ $DG(0) = 0.$ (3.2) Let A be the generator of the semigroup T solving the linear DDE associated with η and suppose that $\lambda=0$ is a simple eigenvalue of A, giving rise to a center manifold \mathcal{W}^c_{δ} of the origin, linearly approximated by the center eigenspace X_0 . We assume that there are no other eigenvalues on the imaginary axis. Let ϕ and ϕ^{\odot} be eigenvectors of A and A^* corresponding to λ . It is always possible to scale these vectors such that the normalization $$\langle \phi^{\odot}, \phi \rangle = 1 \tag{3.3}$$ holds. Since X_0 is the linear span of ϕ it follows that any point y in X_0 can be expressed as a multiple of ϕ . Indeed, $$y = \langle \phi^{\odot}, y \rangle \phi$$ see Theorem IV.2.5.vi of [11]. Let $\psi \in \mathcal{W}^c$. Recalling the discussion in
Remark 2.12, in this section we shall consider solutions $u = u(\cdot, \psi)$ of (AIE) that exist for all time and lie in the ball $B_{\delta}(0)$ of radius δ centered at zero. Such solutions lie on \mathcal{W}^c and satisfy $$\dot{y}(t) = Ay(t) + G(y(t)) \quad \forall t \in \mathbb{R}$$ where y(t) is the projection of u(t) onto X_0 and $G: X_0 \to X_0$ is a C^k -smooth function defined by $G(\phi) := P_0^{\odot \star} R(\mathcal{C}(\phi))$. If we let $z(t) := \langle \phi^{\odot}, y(t) \rangle$ then, by the chain rule and the fact that ϕ^{\odot} is a zero-eigenvector, $$\dot{z} = \langle \phi^{\odot}, G(z\phi) \rangle$$ The right-hand side of this ODE is C^k -smooth in y. Therefore, by (3.2) it has a Taylor expansion starting with quadratic terms, say $$\dot{z} = bz^2 + cz^3 + O(|z|^4), \tag{3.4}$$ where b and c are real numbers. The goal is to find an expression for the yet unknown cubic coefficient c in terms of ϕ , ϕ^{\odot} and derivatives of the function F appearing in the right-hand side of (DDE). The cusp bifurcation is degenerate, in the sense that it is a fold bifurcation with vanishing quadratic coefficient: b = 0. This necessitates calculation of the third-order coefficient. Generically, it requires tuning of two parameters to encounter such a degeneracy: One parameter to hit a fold point and a second parameter to eliminate the quadratic coefficient in the fold normal form. Therefore, the cusp is an example of a local codimension-two bifurcation. On the center manifold itself u satisfies the differential equation (2.37) which we succinctly write as $$\frac{du(t)}{dt} = A^{\odot \star} u(t) + R(u(t)) \qquad \forall t \in \mathbb{R}. \tag{3.5}$$ We recall from (2.15) that $R: X \to X^{\odot \star}$ is given by $$R(\phi) = \sum_{j=1}^{n} g_j(\phi) r_j^{\odot \star} \quad \text{with} \quad r_j^{\odot \star} = (e_j, 0) \in X^{\odot \star}$$ (3.6) where g_j is the j-th component of g and e_j is the j-th vector in the standard basis of \mathbb{R}^n . By the smoothness of g and (3.2) we may expand R in a power series around the origin in X starting with quadratic terms, $$R(u) = \frac{1}{2}B(u, u) + \frac{1}{6}C(u, u, u) + O(\|u\|^4)$$ (3.7) The terms B and C are symmetric bounded multilinear forms from X to $X^{\odot \star}$ representing the derivatives of order two and three of R at the origin. The k-th derivative of R at the origin henceforth is a mapping from X^k to $X^{\odot \star}$. In the case of DDE it follows from (3.6) and the definition of the function g that for arbitrary vectors ξ_1 and ξ_2 in X, $$B(\xi_1, \xi_2) = \sum_{j=1}^n [D^2 G(0)(\xi_1, \xi_2)]_j r_j^{\odot \star}$$ $$= \sum_{j=1}^n [D^2 F(0)(\xi_1, \xi_2)]_j r_j^{\odot \star}$$ $$= D^2 F(0)(\xi_1, \xi_2) r^{\odot \star}$$ Here F is the function appearing in the right-hand side of (DDE). The last line is an 'inner-like' product of $D^2F(0)(\xi_1,\xi_2)$ in \mathbb{R}^n with $r^{\odot\star}:=(r_1^{\odot\star},\ldots,r_n^{\odot\star})$, used for notational convenience. Analogously, $C(\xi_1,\xi_2,\xi_3)=D^3F(0)(\xi_1,\xi_2,\xi_3)r^{\odot\star}$ and so forth. In addition to the expansions in (3.4) and (3.7) we also expand the C^k -smooth center manifold mapping $\mathcal{C}: U \subset X_0 \to X$ introduced in Theorem 2.11, as follows. We recall that U is some open ball around the origin and that \mathcal{W}_{loc}^c is tangent to X_0 there. Now let ξ be a point in X_0 with coordinate $z = \langle \phi^{\odot}, \xi \rangle$ in \mathbb{R}^1 . Since the coordinate mapping $\xi \mapsto z(\xi)$ is a C^k -smooth injection onto some neighbourhood V of the origin in \mathbb{R}^1 , we may introduce a coordinate-version of \mathcal{C} , defined by $$\mathcal{H}: V \subset \mathbb{R}^1 \mapsto X, \qquad \mathcal{H}(z) := \mathcal{C}(\xi(z))$$ and expand it as $$\mathcal{H}(z) = z\phi + \frac{1}{2}h_2z^2 + \frac{1}{6}h_3z^3 + O(|z|^4). \tag{3.8}$$ with unknown coefficients h_{ν} in X. **Remark 3.1.** We have already used the letter h to indicate the delay, following a literature convention. Hence there is the risk of confusion when using the same character for the coefficients in the expansion of \mathcal{H} . We expect that it will be clear from the context which of the two denotations is meant. Now we are ready to state the so-called **homological equation** (3.9) below. The key to it is the invariance of the center manifold. More precisely, if y(t) is the projection of the small solution u(t) onto X_0 and z(t) is its coordinate with respect to ϕ , then $$u(t) = \mathcal{H}(z(t)) \qquad \forall t \in \mathbb{R}$$ Differentiating both sides of this relation with respect to time and using (3.5) we obtain $$A^{\odot \star} \mathcal{H}(z) + R(\mathcal{H}(z)) = D\mathcal{H}(z)\dot{z}$$ (3.9) Using (3.7) and (3.4) we can substitute for R and \dot{z} their power series and order terms in powers of z. After some straightforward calculations one arrives at $$\frac{1}{2}z^{2}[A^{\odot\star}h_{2} + D^{2}F(0)(\phi,\phi)r^{\odot\star}] + \frac{1}{6}z^{3}[A^{\odot\star}h_{3} + 3D^{2}F(0)(\phi,h_{2})r^{\odot\star} + D^{3}F(0)(\phi,\phi,\phi)r^{\odot\star}] = bz^{2}\phi + (c\phi + bh_{2})z^{3} + O(|z|^{4}) \quad (3.10)$$ Calculating the normal form coefficients b and c now simply amounts to recursively solving the above equation by equating coefficients of like powers and solving the corresponding linear systems. In order to do this we need some results which are explained in the next section. We shall return to the calculation of the normal form coefficients in $\S 3.3$. ## 3.2 Solvability and bordered operators We consider the operator $A^{\odot \star}$ appearing in (3.10). When solving the homological equation we shall encounter operator equations of the form $$(\lambda I - A^{\odot \star})(v_0, v) = (w_0, w). \tag{3.11}$$ Here λ is a complex number, (w_0, w) is a given vector in $X^{\odot *}$ and (v_0, v) in $D(A^{\odot *})$ is unknown. For the spaces X, X^*, X^{\odot} and $X^{\odot *}$ we will use the complex versions of the representations in Table 2.1. For example, (v_0, v) and (w_0, w) are elements of $\mathbb{C}^n \times L^{\infty}([-h, 0], \mathbb{C}^n)$. There are two possible cases: If λ is not an eigenvalue of A, then by Theorem 2.3 λ is a regular value and the closed operator $$(\lambda I - A^{\odot \star}) : D(A^{\odot \star}) \subset X^{\odot \star} \to X^{\odot \star}$$ (3.12) has a bounded inverse (the resolvent at λ), so $$(v_0, v) = (\lambda I - A^{\odot \star})^{-1}(w_0, w)$$ (3.13) ¹From §2 of [31]: 'Why this is called a homological equation is seldomly explained and this paper is written to provide an explanation of this terminology and to define the so-called unique normal form in terms of spectral sequences.' is the unique solution in $D(A^{\odot *})$ of (3.11). However, if λ is an eigenvalue of A, then (3.11) need not have a solution. Moreover, any solution that does exist is not unique, since we may add to it an arbitrary linear combination of eigenvectors of $A^{\odot *}$ corresponding to λ . We shall use the following lemma as a solvability condition on the right-hand side of (3.11). (In fact, since decompositions analogous to (3.14) below hold for $\lambda I - A, \lambda I - A^*$ and $\lambda I - A^{\odot}$, it follows from the lemma that all these operators are of Fredholm type for any choice of λ , but the adjoints among them are in general not norm-densely defined.) **Lemma 3.2** (Fredholm Alternative). Let $\lambda \in \mathbb{C}$ be arbitrary. Then (3.11) has a solution $(v_0, v) \in D(A^{\odot \star})$ if and only if (w_0, w) annihilates $N(\lambda I - A^*)$. *Proof.* We observe that $N(\lambda I - A^*) = N(\lambda I - A^{\odot})$. Hence by the Closed Range Theorem (see e.g. §IV.10 of [36]) the assertion of the lemma is equivalent to (3.12) having closed range, so we only need to consider the case that λ is an eigenvalue. Suppose that the order of λ as a pole of $z \mapsto \Delta(z)^{-1}$ is equal to $k_{\lambda} \in \mathbb{N}$. Then $X^{\odot *}$ has the direct sum decomposition $$X^{\odot \star} = N[(\lambda I - A^{\odot \star})^{k_{\lambda}}] \oplus R[(\lambda I - A^{\odot \star})^{k_{\lambda}}], \tag{3.14}$$ where the first component is finite-dimensional and the second component is closed, see Theorem IV.2.5 of [11]. Because $R(\lambda I - A^{\odot \star})$ contains $R[(\lambda I - A^{\odot \star})^{k_{\lambda}}]$ it too is closed by Lemma 5.6 of [32]. Let us now assume that (3.11) is consistent, i.e. it has at least one solution. From [11, Theorem II.5.5 and Corollary III.2.12] we know that the adjoint generator $A^{\odot \star}$ on $X^{\odot \star}$ is given by $$D(A^{\odot \star}) = \left\{ (\alpha, \psi) \in X^{\odot \star} : \psi \in \operatorname{Lip}(\alpha) \right\}, \qquad A^{\odot \star}(\alpha, \psi) = \begin{bmatrix} \int_0^h d\eta(\theta)\psi(-\theta) \\ \dot{\psi} \end{bmatrix}, \qquad (3.15)$$ where $\operatorname{Lip}(\alpha)$ is the subset of $L^{\infty}([-h,0],\mathbb{C}^n)$ whose elements contain a Lipschitz continuous representative having the value α at zero. We note that such a representative is unique, if it exists. The next result is taken from [11, Corollary IV.5.4]. **Lemma 3.3.** Suppose λ is not an eigenvalue. Then the unique solution of (3.11) is represented by $$v(\theta) = e^{\lambda \theta} v_0 + \int_{\theta}^{0} e^{\lambda(\theta - \sigma)} w(\sigma) d\sigma, \qquad \theta \in [-h, 0], \tag{3.16}$$ with $$v_0 = \Delta(\lambda)^{-1} \left[w_0 + \int_0^h d\eta(\tau) \int_0^\tau e^{-\lambda \sigma} w(\sigma - \tau) d\sigma \right], \tag{3.17}$$ where Δ is the characteristic matrix function from (2.16). Corollary 3.4. The following two special cases will appear frequently in our calculations. • Let $(w_0, w) = (w_0, 0)$. Then the solution of (3.11) is represented by $$(v_0, v) = \begin{pmatrix}
\Delta(\lambda)^{-1} w_0 \\ \theta \mapsto e^{\lambda \theta} \Delta(\lambda)^{-1} w_0 \end{pmatrix}.$$ • Let $(w_0, w) = (0, \theta \mapsto e^{\lambda \theta} \Delta(\lambda)^{-1} \zeta)$ for some fixed vector ζ in \mathbb{C}^n . Then $$(v_0, v) = \begin{pmatrix} \Delta(\lambda)^{-1} [\Delta'(\lambda) - I] \Delta(\lambda)^{-1} \zeta \\ \theta \mapsto \Delta(\lambda)^{-1} [\Delta'(\lambda) - I - \theta \Delta(\lambda)] w(\theta) \end{pmatrix}.$$ *Proof.* The first representation follows immediately by substitution into (3.16) and (3.17). For the second representation, we first calculate v_0 from (3.17) as $$v_0 = \Delta(\lambda)^{-1} \int_0^h d\eta(\tau) \int_0^\tau e^{-\lambda \sigma} e^{\lambda(\sigma - \tau)} d\sigma \Delta(\lambda)^{-1} \zeta$$ $$= \Delta(\lambda)^{-1} \int_0^h \int_0^\tau e^{-\lambda \tau} d\sigma d\eta(\tau) \Delta(\lambda)^{-1} \zeta$$ $$= \Delta(\lambda)^{-1} \int_0^h \tau e^{-\lambda \tau} d\eta(\tau) \Delta(\lambda)^{-1} \zeta$$ $$= \Delta(\lambda)^{-1} [\Delta'(\lambda) - I] \Delta(\lambda)^{-1} \zeta.$$ Substituting this into (3.16) we obtain, for $\theta \in [-h, 0]$, $$v(\theta) = e^{\lambda \theta} v_0 + \int_{\theta}^{0} e^{\lambda(\theta - \sigma)} e^{\lambda \sigma} d\sigma \Delta(\lambda)^{-1} \zeta$$ $$= e^{\lambda \theta} v_0 - \theta e^{\lambda \theta} \Delta(\lambda)^{-1} \zeta$$ $$= e^{\lambda \theta} \Delta(\lambda)^{-1} [\Delta'(\lambda) - I] \Delta(\lambda)^{-1} \zeta - \theta e^{\lambda \theta} \Delta(\lambda)^{-1} \zeta$$ $$= \Delta(\lambda)^{-1} [\Delta'(\lambda) - I - \theta \Delta(\lambda)] e^{\lambda \theta} \Delta(\lambda)^{-1} \zeta$$ $$= \Delta(\lambda)^{-1} [\Delta'(\lambda) - I - \theta \Delta(\lambda)] w(\theta).$$ If λ is an eigenvalue, a solution of (3.11) is not unique, if it exists. In a sense the following simple lemma makes an arbitrary but (as we shall see) convenient choice among all solutions available: It singles out the solution 'orthogonal' to the eigenspace of λ . **Lemma 3.5.** Let $L: D(L) \subset E \to E$ be a closed, densely defined linear operator on a complex Banach space E. Suppose that zero is a simple eigenvalue of L and L^* with corresponding eigenvectors ψ and ψ^* . Let P be the spectral projector from E onto the zero-eigenspace. Assume that for given $y^* \in E^*$ there exists a particular solution x_0^* in $D(L^*)$ of the equation $$L^*x^* = y^*. (3.18)$$ Then the augmented system $$\begin{cases} L^*x^* + s\psi^* = y^*, \\ \langle x^*, \psi \rangle = 0, \end{cases}$$ (3.19) has a unique solution $x^* = (I - P^*)x_0^*$ and s = 0, and x^* is the unique solution of (3.18) that annihilates ψ . Hence, if λ is a simple eigenvalue of A and (3.11) is consistent, then we can apply Lemma 3.5 to the (closed and densely defined) linear operator $L = \lambda I - A^{\odot}$ on X^{\odot} with domain $D(A^{\odot})$ to obtain the unique solution of (3.11) that vanishes on the eigenspace corresponding to λ . *Proof of Lemma 3.5.* The adjoint P^* is exactly the spectral projector from E^* onto the kernel of L^* . It can be represented as $$P^* = \frac{\langle \cdot, \psi \rangle}{\langle \psi^*, \psi \rangle} \psi^*.$$ This shows that x^* is in $D(L^*)$ and satisfies (3.19). Suppose (x_1^*, s_1) is another solution. Then $$L^*(x^* - x_1^*) + (s - s_1)\psi^* = 0, (3.20)$$ and by pairing with ψ , $$\langle x^* - x_1^*, L\psi \rangle + (s - s_1) \langle \psi^*, \psi \rangle = 0.$$ The first term vanishes because ψ is an eigenvector. Since $\langle \psi^*, \psi \rangle \neq 0$ it follows that $s_1 = s$ and from (3.20) we see that $x^* - x_1^* = \gamma \psi^*$ for some $\gamma \in \mathbb{C}$. Pairing with ψ leads to $\gamma = 0$ and thus $x_1^* = x^*$. One may note that (3.19) at least formally looks like the operator matrix equation $$\begin{bmatrix} L^* & \psi^* \\ \psi & 0 \end{bmatrix} \begin{bmatrix} x^* \\ s \end{bmatrix} = \begin{bmatrix} y^* \\ 0 \end{bmatrix}.$$ Such systems containing auxiliary equations and unknowns are called **bordered systems**. The unique solution x^* mentioned in the lemma shall be denoted by $x^* = [L^*]^{INV}y^*$. Those familiar with [24] may notice that the above lemma is nothing more than an adaptation of (4.6) in that reference to the present operator setting of delay equations. For a discussion of finite dimensional bordered systems and their numerical analysis, see [17, Chapter 3] and the references therein. The only thing still lacking is a representation for $(\lambda I - A^{\odot \star})^{INV}$ when λ is a simple eigenvalue, analogous to Lemma 3.3 which applies to the regular case. **Proposition 3.6.** Suppose λ is a simple eigenvalue of A and assume that (3.11) is consistent for a given $(w_0, w) \in X^{\odot \star}$. Let $q \in \mathbb{C}^n$, $\phi \in X$, $p \in \underline{\mathbb{C}}^n$ and $\phi^{\odot} \in X^{\odot}$ be as in Lemma 2.5, normalized to $\langle \phi^{\odot}, \phi \rangle = 1$. Then the bordered inverse $(\lambda I - A^{\odot \star})^{INV}(w_0, w)$ is represented by $$v(\theta) = e^{\lambda \theta} v_0 + \int_{\theta}^{0} e^{\lambda(\theta - \sigma)} w(\sigma) d\sigma, \qquad \theta \in [-h, 0], \tag{3.21}$$ with $$v_0 = \xi + \gamma q, \qquad \xi := \Delta(\lambda)^{INV} \left[w_0 + \int_0^h d\eta(\tau) \left(\int_0^\tau e^{-\lambda \sigma} w(\sigma - \tau) d\sigma \right) \right]. \tag{3.22}$$ The constant γ is given by $$\gamma = -p\Delta'(\lambda)\xi - p\int_0^h \left(\int_\tau^h e^{-\lambda s} d\eta(s)\right) \left(\int_{-\tau}^0 e^{-\lambda \sigma} w(\sigma) d\sigma\right) d\tau.$$ (3.23) *Proof.* We see from (3.15) that the second component of $(\lambda I - A^{\odot \star})^{INV}(w_0, w)$ admits a Lipschitz continuous representative $v : [-h, 0] \to \mathbb{C}^n$ satisfying $$\lambda v - \dot{v} = w, \qquad v(0) = v_0.$$ (3.24) The first equality holds almost everywhere and v_0 is the first component of $(\lambda I - A^{\odot \star})^{INV}(w_0, w)$. Any Lipschitz continuous solution of (3.24) is unique - integrate and use Gronwall's inequality - and the right-hand side of (3.21) is such a solution, so (3.21) itself follows. Meanwhile, from (3.15) we see that v_0 satisfies the equality $$\lambda v_0 - \int_0^h d\eta(\theta) v(-\theta) = w_0,$$ and upon substitution for v using (3.21) this yields the consistent finite dimensional linear system $$\Delta(\lambda)v_0 = w_0 + \int_0^h d\eta(\tau) \int_0^\tau e^{-\lambda\sigma} w(\sigma - \tau) d\sigma.$$ Consequently the bordered matrix inverse in the definition of ξ in (3.22) is well-defined. Incidentally, from the proof so far we observe that it is no coincidence that (3.21) reproduces (3.16). Likewise, the argument of the bordered matrix inverse in the expression for ξ is identical to the argument of the ordinary matrix inverse in (3.17). Since the one-dimensional nullspace of $\Delta(\lambda)$ is spanned by q, the expression for v_0 follows for some $\gamma \in \mathbb{C}$. The value of γ is determined by the requirement that $$\langle (v_0, v), \phi^{\odot} \rangle = 0. \tag{3.25}$$ According to Lemma 2.5 and the formula for the duality pairing between $X^{\odot \star}$ and X^{\odot} in Table 2.1, we have $$\begin{split} \langle (v_0,v),\phi^{\odot}\rangle &= \langle (v_0,v), \left(p,\theta\mapsto p\int_{\theta}^h e^{\lambda(\theta-s)}\,d\eta(s)\right)\rangle \\ &= pv_0 + \int_0^h \left(p\int_{\theta}^h e^{\lambda(\theta-s)}\,d\eta(s)\right) \left(e^{-\lambda\theta}v_0 + \int_{-\theta}^0 e^{-\lambda(\theta+\sigma)}w(\sigma)\,d\sigma\right)\,d\theta \\ &= pv_0 + p\int_0^h \int_{\theta}^h e^{-\lambda s}\,d\eta(s)\,d\theta v_0 + p\int_0^h \left(\int_{\theta}^h e^{-\lambda s}\,d\eta(s)\right) \left(\int_{-\theta}^0 e^{-\lambda\sigma}w(\sigma)\,d\sigma\right)\,d\theta. \end{split}$$ Using Fubini's theorem and the definition of Δ , we obtain for the sum of the first two terms, $$pv_0 + p \int_0^h \int_\theta^h e^{-\lambda s} d\eta(s) d\theta v_0 = p\Delta'(\lambda)v_0.$$ Let us denote the third term by I. Requiring (3.25) implies that $p\Delta'(\lambda)(\xi + \gamma q) + I = 0$. Since $p\Delta'(\lambda)q = \langle \phi^{\odot}, \phi \rangle = 1$ by assumption, it follows that $$\gamma = -p\Delta'(\lambda)\xi - I,$$ which is (3.23). We shall frequently encounter the following special case. **Corollary 3.7.** Suppose in addition that $(w_0, w) = (\zeta, 0) + \kappa(q, \phi)$ where the column vector $\zeta \in \mathbb{C}^n$ and $\kappa \in \mathbb{C}$ are arbitrary. Then $$v_0 = \xi + \gamma q, \qquad v(\theta) = e^{\lambda \theta} (v_0 - \kappa \theta q), \qquad \theta \in [-h, 0],$$ (3.26) with $$\xi = \Delta(\lambda)^{INV} (\zeta + \kappa \Delta'(\lambda)q) \quad and \quad \gamma = -p\Delta'(\lambda)\xi + \frac{1}{2}\kappa p\Delta''(\lambda)q.$$ (3.27) *Proof.* We note that ζ and κ are uniquely determined for a given (w_0, w) . The results are now obtained by substitution into Proposition 3.6 and subsequent simplification. The formula for γ in (3.27) also requires one application of Fubini's theorem. In this case we will employ the notation $v = B_{\lambda}^{INV}(\zeta, \kappa)$ to succinctly denote the bordered inverse. ## 3.3 The cusp bifurcation revisited We now continue the discussion that we left in §3.1 after the derivation of (3.10). From this point on all the computations are completely analogous to those carried out for the cusp bifurcation in ODE in [24, §5]. Indeed, the resulting formulas will formally (that is, in appearance) be almost identical. This is the virtue of the center manifold reduction and the relatively simple spectral theory of delay equations. Equating coefficients of z^2 in the left and right-hand sides of (3.10) leads to the linear system $$A^{\odot \star} h_2 = -D^2 F(0)(\phi, \phi) r^{\odot \star} + 2b\phi \tag{3.28}$$ This equation is singular, since $\lambda = 0$ is assumed to be a simple eigenvalue of A. By the Fredholm
Alternative (Lemma 3.2) and the chosen normalization (3.3) it has a solution if and only if $$-\langle D^2 F(0)(\phi,\phi) r^{\odot \star}, \phi^{\odot} \rangle + 2b = 0$$ which happens if and only if $$b = \frac{1}{2} \langle D^2 F(0)(\phi, \phi) r^{\odot \star}, \phi^{\odot} \rangle \tag{3.29}$$ We thus found the quadratic coefficient in the critical normal form (3.4) and recall that at the cusp bifurcation b=0. Had we been interested in non-degenerate fold bifurcation, then we could have stopped here. We note that (3.28) may now be assumed consistent, and using Lemma 3.5 we can write $$h_2 = -[A^{\odot \star}]^{INV} D^2 F(0)(\phi, \phi) r^{\odot \star}$$ (3.30) for the unique solution h_2 in X satisfying $\langle \phi^{\odot}, h_2 \rangle = 0$. Proceeding with the coefficients of z^3 terms we find the linear equation $$A^{\odot *}h_3 = c\phi - \frac{1}{6}[3D^2F(0)(\phi, h_2)r^{\odot *} + D^3F(0)(\phi, \phi, \phi)r^{\odot *}]$$ which is singular as well. The Fredholm Alternative implies that $$c = \frac{1}{6} \langle 3D^2 F(0)(\phi, h_2) r^{\odot \star} + D^3 F(0)(\phi, \phi, \phi) r^{\odot \star}, \phi^{\odot} \rangle$$ (3.31) This equation gives an expression for the cubic coefficient in the critical normal form, but we are not done yet: We still need to evaluate the 'abstract' pairings in (3.29) and (3.31). Firstly, using Table 2.1 and Lemma 2.5 we observe that (3.29) becomes $$b = \frac{1}{2}pD^2F(0)(\phi, \phi)$$ (3.32) which cannot be made any more concrete since F clearly depends on the specific system under investigation. Note, however, that the right-hand side of (3.32) is now an ordinary inner product in \mathbb{R}^n which can be evaluated straightforwardly, e.g. on a computer. Similarly, (3.31) becomes $$c = \frac{1}{6}p[3D^2F(0)(\phi, h_2) + D^3F(0)(\phi, \phi, \phi)]$$ (3.33) where h_2 is calculated from (3.30) using Corollary 3.7 with $\zeta = -D^2 F(0)(\phi, \phi)$ and $\kappa = 0$. Plugging this in and using that $\lambda = 0$ yields $$h_2(\theta) = -\Delta(0)^{INV} D^2 F(0)(\phi, \phi) + [p\Delta'(0)\Delta(0)^{INV} D^2 F(0)(\phi, \phi)]q$$ (3.34) so h_2 is a constant function in $X = C([-h, 0], \mathbb{R}^n)$. We conclude our discussion of the cusp bifurcation with a rather trivial example that serves to illustrate the application of the formulas just derived in the simplest possible setting. For more elaborate examples the reader is referred to Chapter 4. #### **Example 3.8.** Consider the scalar DDE $$\dot{x}(t) = \alpha_1 x(t) + g(x(t-1)) = F(x_t) \tag{3.35}$$ with $g: \mathbb{R} \to \mathbb{R}$ a function of class C^3 satisfying g(0) = 0 and α_1 a real scalar parameter. Expansion around the zero-equilibrium yields $$\dot{x}(t) = \alpha_1 x(t) + g'(0)x(t-1) + \frac{1}{2}g''(0)[x(t-1)]^2 + \frac{1}{6}g'''(0)[x(t-1)]^3 + O([x(t-1)]^4)$$ (3.36) Theorem 2.3 justifies substitution of $e^{\lambda t}$ into the linearized equation to obtain the characteristic 'matrix' $$\Delta(\lambda) = \alpha_1 - \lambda + g'(0)e^{-\lambda}$$ = $\alpha_1 + g'(0) - (1 + g'(0))\lambda + \frac{1}{2}g'(0)\lambda^2 + O(\lambda^3)$ We see that $\lambda = 0$ is a simple eigenvalue provided $\alpha_1 = -g'(0) \neq 1$. This indicates the occurrence of a fold bifurcation. When $\alpha_1 = -g'(0) = 1$ we observe that λ has multiplicity two, in which case generically a Bogdanov-Takens bifurcation takes place. The latter was analyzed in [11, §IX.10] using the standard two-step approach of center manifold reduction and subsequent normalization. Here we shall concentrate on the former case and henceforth we assume that $$\alpha_1 = -g'(0) \neq 1. \tag{3.37}$$ We start by regarding α_1 as the parameter, leaving all other quantities fixed. We choose $$q = 1,$$ $p = \frac{1}{g'(0) - 1}$ By Lemma 2.5 for this choice the corresponding eigenvectors ϕ and ϕ^{\odot} are properly normalized to satisfy $\langle \phi^{\odot}, \phi \rangle = 1$. The second derivative of F equals $$D^{2}F(0)(\xi_{1},\xi_{2}) = g''(0)\xi_{1}(t-1)\xi_{2}(t-1) \qquad (\xi_{1},\xi_{2} \in X)$$ Note that this is indeed a symmetric bilinear \mathbb{R} -valued form on X. Substitution into (3.32) then yields the quadratic critical normal form coefficient $$b = \frac{1}{2} \frac{g''(0)}{g'(0) - 1}$$ Therefore we may conclude that if (3.37) holds and the parameter α_1 enters the system (3.35) generically, then the trivial equilibrium of (3.35) is a fold point, provided $g''(0) \neq 0$. This is not very surprising, since g''(0) is proportional to the quadratic term in the expansion (3.36). Next we free $\alpha_2 := g''(0)$ as a second parameter. Suppose that $\alpha_2 = 0$, leading to a vanishing quadratic coefficient b. (Such may also occur in the one-parameter situation when (3.35) has a \mathbb{Z}_2 -symmetry, i.e. is invariant under the substitution $x \to -x$. This illustrates the general phenomenon that symmetries lower the codimension of a bifurcation, i.e. the number of defining bifurcation conditions.) A simple calculation shows that all bordered inverses in (3.34) vanish, leaving us with $h_2 = 0$ identically. The third derivative of F equals $$D^{3}F(0)(\xi_{1},\xi_{2},\xi_{3}) = g'''(0)\xi_{1}(t-1)\xi_{2}(t-1)\xi_{3}(t-1) \qquad (\xi_{1},\xi_{2},\xi_{3} \in X)$$ Consequently we see from (3.33) that the cubic critical normal form coefficient is given by $$c = \frac{1}{6} \frac{g'''(0)}{g'(0) - 1}$$ Hence if (3.37) holds and there is generic dependence on the two-dimensional parameter $\alpha = (\alpha_1, \alpha_2)$, then the zero-equilibrium of (3.35) exhibits a non-degenerate cusp singularity, provided $g'''(0) \neq 0$. At such a point two fold branches meet tangentially in the parameter plane. This causes a hysteresis effect [25, §8.2.2].) ## 3.4 Computation of critical normal form coefficients In the three foregoing sections we explained in detail how the normalization method works in the case of the simplest local codimension-two bifurcation, the cusp. To this end some auxiliary techniques were introduced in §3.2. In this section we first summarize the method in generality for the computation of critical normal form coefficients. Next, it is applied to derive expressions for the critical normal form coefficients of the remaining four out of five generically possible codimension-two bifurcations of equilibria in DDE. In order to be as unambiguous as possible, in this and the next section we will pay closer attention to the underlying scalar field and the question of complexification [11, §III.7 and last part of §IV.2] than we have been doing so far. #### 3.4.1 The method Suppose again that the zero-function is a stationary solution of (DDE) on the real Banach space $X = C([-h, 0], \mathbb{R}^n)$. Let A be the generator of the semigroup T on X corresponding to the solution of the linearized equation $$\dot{x}(t) = DF(0)x_t. \tag{3.38}$$ Suppose that one of the bifurcation conditions in Table 3.1 is satisfied and A has no other eigenvalues on the imaginary axis. Let P_0 be the real spectral projector on X associated with | name used in this text | alternative name | bifurcation condition | |------------------------|------------------|--| | cusp | | $\lambda_1 = 0, \ b = 0$ | | Bogdanov-Takens | Takens-Bogdanov | $\lambda_1 = \lambda_2 = 0$ | | generalized Hopf | Bautin | $\lambda_{1,2} = \pm i\omega_0, \omega_0 > 0, l_1(0) = 0$ | | fold-Hopf | zero-Hopf | $\lambda_1 = 0, \ \lambda_{2,3} = \pm i\omega_0, \ \omega_0 > 0$ | | double Hopf | Hopf-Hopf | $\lambda_{1,4} = \pm i\omega_1, \ \lambda_{2,3} = \pm i\omega_2, \ \omega_{1,2} > 0$ | **Table 3.1:** All generically possible two-parameter bifurcations of equilibria in DDE. The bifurcation condition lists the eigenvalues of the generator A of the semigroup T corresponding to the solution of (3.38). The coefficient b is the quadratic coefficient in the fold normal form, which vanishes in the cusp case. The first Lyapunov coefficient $l_1(0)$ is the cubic coefficient in the complex Hopf normal form, evaluated at criticality. It vanishes in the case of a generalized Hopf bifurcation. the purely imaginary eigenvalues of A. The range X_0 of P_0 is the *real* center subspace with finite dimension $n_0 \geq 1$. Let Φ be a basis for X_0 . There exists a local center manifold $\mathcal{W}^c_{\text{loc}}$ for the origin in X that is the image of a C^k -smooth map $\mathcal{C}: \mathcal{D}(\mathcal{C}) \subseteq X_0 \to X$ defined on some neighborhood $\mathcal{D}(\mathcal{C})$ of the origin. Let $\mathcal{H}: \mathcal{D}(\mathcal{H}) \subseteq \mathbb{R}^{n_0} \to X$ be the representation of \mathcal{C} with respect to the basis Φ . If $u: I \to X$ is a solution of (AIE) on some non-trivial interval $I \subseteq \mathbb{R}$ and $u(t) \in \mathcal{W}_{loc}^c$ for all $t \in I$, then u is differentiable on I and satisfies the differential equation $$\dot{u}(t) = A^{\odot \star} u(t) + R(u(t)), \qquad t \in I. \tag{3.39}$$ By definition and in line with the terminology used in [25, §5.1 and §8.7], the **restriction** of (3.39) to W_{loc}^c is the differential equation for $y = P_0u$ obtained from (3.39) by projection onto X_0 . In coordinates this restriction take the form $$\dot{v}(t) = \mathcal{G}(v(t)), \qquad t \in I, \tag{3.40}$$ where $v(t) = [y(t)]_{\Phi} \in \mathbb{R}^{n_0}$ is a coordinate vector with respect to Φ and \mathcal{G} is a \mathbb{C}^k -smooth vector field on \mathbb{R}^{n_0} . We therefore have the relation $$u(t) = \mathcal{H}(v(t)), \qquad t \in I.$$ Substitution of the previous two equations into (3.39) then yields the homological equation $$D\mathcal{H}(v(t))\mathcal{G}(v(t)) = A^{\odot \star}\mathcal{H}(v(t)) + R(\mathcal{H}(v(t))), \qquad t \in I.$$ (3.41) Naturally there exist many different solutions for the unknowns \mathcal{G} and \mathcal{H} , corresponding to different parametrizations of
\mathcal{W}_{loc}^c . We require that \mathcal{G} and \mathcal{H} are such that (3.40) is the critical normal form of the bifurcation of interest, up to terms of sufficiently high order. For this we expand $$\mathcal{G}(v) = \sum_{|\mu|=1}^{N} \frac{1}{\mu!} g_{\mu} v^{\mu} + O(|v|^{N+1}), \qquad \mathcal{H}(v) = \sum_{|\mu|=1}^{N} \frac{1}{\mu!} h_{\mu} v^{\mu} + O(|v|^{N+1}), \tag{3.42}$$ in the unknown critical normal form coefficients $g_{\mu} \in \mathbb{R}^{n_0}$ and the unknown center manifold coefficients $h_{\mu} \in X$. The order N is chosen large enough such that all the desired $g_{\mu} \in \mathbb{R}^{n_0}$ are explicitly present. We also expand the nonlinearity R in (3.39) as $$R(u) = \sum_{j>1}^{N} \frac{1}{j!} D^{j} F(0)(u, \dots, u) r^{\odot \star} + O(|u|^{N+1}), \tag{3.43}$$ where the continuous j-linear form $D^j F(0): X^j \to \mathbb{R}^n$ is the jth derivative of F at $0 \in X$. Substituting (3.42) and (3.43) into (3.41) and collecting coefficients of increasing powers of v, we can solve inductively for the unknown coefficients g_{μ} and h_{μ} by applying the Fredholm alternative and taking bordered inverses as discussed in §3.2. #### 3.4.2 List of codimension-two normal forms Among the five bifurcations in Table 3.1, the cusp, Bogdanov-Takens and generalized Hopf bifurcations have topological parameter-dependent normal forms [25, Definition 2.16]. As part of that definition, topological normal forms are polynomial systems of finite order. In contrast, the fold-Hopf and double Hopf bifurcations admit only approximate parameter-dependent normal forms [25, end of §8.1]. Below we list critical normal forms for each bifurcation. It is important to use normal forms that do not involve time reparametrization, because the time derivatives in (3.39) and (3.40) use the same unit of time. We then explain - for each case and with detailed references - how the critical coefficients enter the (exact or approximate) parameter-dependent normal forms. #### Cusp The cusp bifurcation was already discussed in §3.1 and §3.3. The coefficient c from (3.4) enters the topological normal form [25, Theorem 8.1] via the coefficient $s = \operatorname{sign} c$ of the cubic term. #### **Bogdanov-Takens** A critical normal form for (3.40) that can be obtained without time reparametrization is given by $$\begin{cases} \dot{z}_0 = z_1, \\ \dot{z}_1 = a_2 z_0^2 + b_2 z_0 z_1 + O(\|z\|^3), \end{cases}$$ (3.44) with $z = (z_0, z_1) \in \mathbb{R}^2$ and a_2 and b_2 are real coefficients [25, (8.49)]. Non-degeneracy is checked by verifying that $a_2 \neq 0$ and $b_2 \neq 0$. If this is the case, then $s = \text{sign}(a_2b_2)$ enters the topological normal form as the coefficient of the $\eta_1\eta_2$ -term in [25, Theorem 8.5]. In §3.5.2 we will also provide expressions for critical coefficients a_3 and b_3 of order three in the critical normal form [26] $$\begin{cases} \dot{z}_0 = z_1, \\ \dot{z}_1 = a_2 z_0^2 + b_2 z_0 z_1 + a_3 z_0^3 + b_3 z_0^2 z_1 + O(\|z\|^4). \end{cases}$$ (3.45) This is done for the purpose of discussing an example of degeneracy due to symmetry in §4.2. #### Generalized Hopf For (3.40) we use the Poincaré normal form for the generalized Hopf bifurcation [25, Lemma 8.3], at criticality given by $$\dot{z} = i\omega_0 z + c_1 z |z|^2 + c_2 z |z|^4 + O(|z|^6), \tag{3.46}$$ where c_1 and c_2 are complex. The derivation of this normal form does not require a time reparametrization. The first and second Lyapunov coefficients are given by $$l_1(0) = \frac{1}{\omega_0} \operatorname{Re} c_1, \qquad l_2(0) = \frac{1}{\omega_0} \operatorname{Re} c_2.$$ For a generalized Hopf bifurcation $l_1(0) = 0$ and non-degeneracy is verified by checking that the second Lyapunov coefficient $l_2(0) \neq 0$. It enters the topological normal form [25, Theorem 8.3] via the coefficient $s = \text{sign } l_2(0)$ of the fifth-order term. The bifurcation is supercritical when s = -1 and subcritical when s = +1. #### Fold-Hopf We use the Poincaré normal form for the fold-Hopf bifurcation [25, Lemma 8.9], at criticality given by $$\begin{cases} \dot{z}_0 = G_{200}z_0^2 + G_{011}|z_1|^2 + G_{300}z_0^3 + G_{111}z_0|z_1|^2 + O(\|(z_0, z_1, \bar{z}_1)\|^4), \\ \dot{z}_1 = i\omega_0 z_1 + H_{110}z_0 z_1 + H_{210}z_0^2 z_1 + H_{021}z_1|z_1|^2 + O(\|(z_0, z_1, \bar{z}_1)\|^4), \end{cases} (3.47)$$ where the coefficients G_{jkl} are real, the H_{jkl} are complex and $||(z_0, z_1, \bar{z}_1)||^2 = z_0^2 + |z_1|^2$. Non-degeneracy is verified by checking that $G_{200} \neq 0$, $G_{011} \neq 0$ and $E(0) \neq 0$, where $$E(0) = \operatorname{Re}\left[H_{210} + H_{110}\left(\frac{\operatorname{Re}H_{021}}{G_{011}} - \frac{3G_{300}}{2G_{200}} + \frac{G_{111}}{2G_{011}}\right) - \frac{H_{021}G_{200}}{G_{011}}\right].$$ (3.48) Truncation of the smooth normal form [25, Theorem 8.6] gives an approximate normal form that is *not* a topological normal form. In the analysis of the approximate normal form different cases are distinguished, depending on the values of the coefficients $$s = \text{sign}(G_{200}G_{011}), \qquad \theta = \frac{\text{Re}\,H_{110}}{2G_{200}},$$ [25, §8.5.2]. Only for the case $s=+1, \theta>0$ can all terms beyond quadratic order in the smooth normal form be truncated to obtain a locally topologically equivalent quadratic system [25, Theorem 8.7]. #### Double Hopf Assuming the non-resonance conditions $$k\omega_1 \neq l\omega_2, \quad \forall k, l \in \mathbb{N} \text{ with } k+l \leq 5,$$ (3.49) we use the Poincaré normal form for the double Hopf bifurcation [25, Lemma 8.13], at criticality given by $$\begin{cases} \dot{z}_{1} = i\omega_{1}z_{1} + G_{2100}z_{1}|z_{1}|^{2} + G_{1011}z_{1}|z_{2}|^{2} + G_{3200}z_{1}|z_{1}|^{4} + G_{2111}z_{1}|z_{1}|^{2}|z_{2}|^{2} \\ + G_{1022}z_{1}|z_{2}|^{4} + O(\|(z_{1}, \bar{z}_{1}, z_{2}, \bar{z}_{2}\|^{6})) \\ \dot{z}_{2} = i\omega_{2}z_{2} + H_{1110}z_{2}|z_{1}|^{2} + H_{0021}z_{2}|z_{2}|^{2} + H_{2210}z_{2}|z_{1}|^{4} + H_{1121}z_{2}|z_{1}|^{2}|z_{2}|^{2} \\ + H_{0032}z_{2}|z_{2}|^{4} + O(\|(z_{1}, \bar{z}_{1}, z_{2}, \bar{z}_{2}\|^{6})) \end{cases} (3.50)$$ where the coefficients G_{jklm} and H_{jklm} are all complex and $||(z_1, \bar{z}_1, z_2, \bar{z}_2)||^2 = |z_1|^2 + |z_2|^2$. Non-degeneracy is verified by checking that the real parts of the cubic coefficients are all non-zero, $$p_{11} := \operatorname{Re} G_{2100} \neq 0,$$ $$p_{12} := \operatorname{Re} G_{1011} \neq 0,$$ $$p_{21} := \operatorname{Re} H_{1110} \neq 0,$$ $$p_{22} := \operatorname{Re} H_{0021} \neq 0.$$ (3.51) Truncation of the smooth normal form [25, Theorem 8.8] produces an approximate normal form that is *not* a topological normal form. It has very rich dynamics. One distinguishes between the *simple* case $(p_{11}p_{22} > 0)$ and the *difficult* case $(p_{11}p_{22} < 0)$. Depending on the values of the coefficients $$\theta := \frac{p_{12}}{p_{22}}, \qquad \delta := \frac{p_{21}}{p_{11}},$$ multiple subcases are discerned [25, §8.6.2]. The analysis requires the imposition of a number of extra nondegeneracy conditions that can be expressed in terms of the coefficients p_{jk} from (3.51) as well as - for the difficult case - the coefficients s_1 and s_2 of order five. #### 3.4.3 A remark on generality and presentation Before we present our formulas for the various critical normal form coefficients, we pause to comment on our presentation of the various bifurcation formulas that will follow. For those readers familiar with finite-dimensional applications of the normalization method, e.g. to ODEs in Chapter 8.7 of [25] or to maps in Chapter 3 of [29], it will by now have become quite clear that all the formulas found in these references carry over, formally, to the case of DDE. Put simplistically, one merely need add a \odot here and a * there and one is done. This is entirely due to the existence of a local center manifold for DDE. Clearly then, it is to be expected that any infinite-dimensional dynamical system admitting reduction to a finite-dimensional center manifold near an equilibrium is amenable to the normalization method discussed here, provided the generators of its linearizations are sufficiently well-behaved to allow for application of the Fredholm Alternative, i.e. they should have closed range, see the proof of Lemma 3.2. With these considerations in mind, one could present the bifurcation formulas below in a rather general form, leaving expressions involving dual pairings as well as bordered inverse unevaluated. By proceeding in this way, one achieves results that are applicable to any evolution equation fitting in the general sun-star framework of §2.1, and not only to DDE. For instance, the formulas found would be equally well applicable to renewal equations and mixed systems, see [7]. Moreover, these results would be formally almost identical to those found in the finite-dimensional case. However, as I already expressed in the introductory Chapter 1, it is my opinion that one should not only strive for generality but also for what one might call call evaluability. In order to actually use the formulas found below in applications, one should be able to evaluate the dual pairings and (bordered) inverses appearing in them, ideally as ordinary inner products and matrix-vector multiplications. At this lower level of abstraction the characteristic matrix plays a prominent role, see e.g. Lemma 3.3, Proposition 3.6 and their respective corollaries. In essence it allows us to replace an operator (A, A^*, \ldots) on an infinite-dimensional space by a matrix without any additional discretization or limit procedure. I want to stress the far-reaching consequences of this result by exploiting it to make the bifurcation formulas as explicit as possible, and this is what has been done below. I hope that the reader will see the general applicability of these formulas even though I have chosen not to present them in their most general form. #### 3.5 Critical
normal form coefficients Here we shall derive the critical coefficients for the remaining four bifurcations mentioned in Table 3.1, but we will be slightly more brief than in the cusp case. #### 3.5.1 Cusp The cubic normal form coefficient c appearing in the cusp normal form has been derived in §3.3, see (3.33). #### 3.5.2 Bogdanov-Takens At this bifurcation $\sigma(A)$ contains a zero-eigenvalue of geometric (algebraic) multiplicity one (two) and there are no other eigenvalues on the imaginary axis. Therefore, there exist eigenvectors ϕ_0 and ϕ_0^{\odot} and generalized eigenvectors ϕ_1 and ϕ_0^{\odot} of A and A^* , $$A\phi_0 = 0$$, $A\phi_1 = \phi_0$, $A^*\phi_1^{\odot} = 0$, $A^*\phi_0^{\odot} = \phi_1^{\odot}$ and these span the respective generalized eigenspaces. Let q_0, q_1 be the column vectors and p_1, p_0 be the row vectors mentioned in Lemma 2.7. By an application of the Fredholm Alternative (Lemma 3.2) to the decomposition of X into the direct sum of the closed range and finite-dimensional kernel of the spectral projector associated with the zero-eigenvalue, it is easy to see that it is always possible to achieve a scaling such that the following 'biorthogonality' relation is satisfied: $$\langle \phi_i^{\odot}, \phi_i \rangle = \delta_{ij} \qquad (i, j = 0, 1)$$ (3.52) In practice this scaling can be achieved by an application of formulas (2.19). If we let $z \in \mathbb{R}^2$ represent a coordinate vector with respect to $\{\phi_0, \phi_1\}$, then the homological equation (3.41) becomes $$A^{\odot \star} \mathcal{H}(z) + R(\mathcal{H}(z)) = D_{z_0} \mathcal{H}(z) \dot{z}_0 + D_{z_1} \mathcal{H}(z) \dot{z}_1$$ (3.53) with \mathcal{H} in (3.42) taking the form $$\mathcal{H}(z) = z_0 \phi_0 + z_1 \phi_1 + \frac{1}{2} h_{20} z_0^2 + h_{11} z_0 z_1 + \frac{1}{2} h_{02} z_1^2 + \frac{1}{6} h_{30} z_0^3 + \frac{1}{2} h_{21} z_0^2 z_1 + \frac{1}{2} h_{12} z_0 z_1^2 + \frac{1}{6} h_{03} z_1^3 + O(\|z\|^4)$$ and \dot{z} given by (3.45). Note that N=3 because both quadratic and cubic coefficients are sought. Collecting the z_0^2 -terms and the z_0z_1 -terms in (3.53) yields two singular linear systems: $$A^{\odot \star} h_{20} = 2a_2 \phi_1 - D^2 F(0)(\phi_0, \phi_0) r^{\odot \star}$$ $$A^{\odot \star} h_{11} = h_{20} + b_2 \phi_1 - D^2 F(0)(\phi_0, \phi_1) r^{\odot \star}$$ (3.54) By the Fredholm Alternative the first of these has a solution if and only if $$a_2 = \frac{1}{2}p_1 D^2 F(0)(\phi_0, \phi_0)$$ (3.55) which determines the first quadratic coefficient. Now that we know there exists a solution h_{20} in $D(A^{\odot *})$ wee see by virtue of (3.52) that $$\langle \phi_1^{\odot}, h_{20} \rangle = \langle A^{\odot} \phi_0^{\odot}, h_{20} \rangle = \langle A^{\odot \star} h_{20}, \phi_0^{\odot} \rangle = -p_0 D^2 F(0)(\phi_0, \phi_0)$$ Demanding solvability of the second equation in (3.54) then yields $$b_2 = p_0 D^2 F(0)(\phi_0, \phi_0) + p_1 D^2 F(0)(\phi_0, \phi_1)$$ (3.56) We observe that for the quadratic coefficients a_2 and b_2 no (bordered) inverses need to be evaluated. We give expressions for the cubic coefficients a_3 and b_3 without proof. For hints in an ODE-context, see [26], where issues of simplification and computation for coefficients of orders up to and including four are discussed. We find: $$a_3 = \frac{1}{2}p_1 D^2 F(0)(h_{20}, \phi_0) - \frac{1}{2}a_2 p_1 D^2 F(0)(\phi_1, \phi_1) + \frac{1}{6}p_1 D^3 F(0)(\phi_0, \phi_0, \phi_0)$$ (3.57) and $$b_{3} = \frac{1}{2} p_{1} \left\{ D^{2} F(0)(h_{20}, \phi_{1}) + 2D^{2} F(0)(h_{11}, \phi_{0}) + D^{3} F(0)(\phi_{0}, \phi_{0}, \phi_{1}) \right\}$$ $$+ \frac{1}{2} p_{0} \left\{ 3D^{2} F(0)(h_{20}, \phi_{0}) + D^{3} F(0)(\phi_{0}, \phi_{0}, \phi_{0}) \right\}$$ $$+ a_{2} p_{0} D^{2} F(0)(\phi_{1}, \phi_{1}) - 5a_{2} \langle \phi_{0}^{\odot}, h_{11} \rangle - \frac{1}{2} b_{2} p_{1} D^{2} F(0)(\phi_{1}, \phi_{1})$$ $$(3.58)$$ where h_{20} and h_{11} are found by applying the bordered inverse to the respective right-hand sides of (3.54). Explicit expressions for the solutions require a non-simple counterpart to Proposition 3.6, but since our examples in Chapter 4 do not require these, we refrain from stating such a result. #### 3.5.3 Generalized Hopf In this case $\sigma(A)$ contains a simple purely imaginary pair $\lambda_{1,2} = \pm i\omega_0$ with $\omega_0 > 0$ and no other purely imaginary eigenvalues. Let ϕ and ϕ^{\odot} be complex eigenvectors of A and A^* corresponding to $\lambda_1 = +i\omega_0$ and let q and p be as in Lemma 2.5. It is always possible to achieve the normalization $$\langle \phi^{\odot}, \phi \rangle = 1. \tag{3.59}$$ Any point y in the real two-dimensional center subspace X_0 corresponding to $\lambda_{1,2}$ may be uniquely expressed with respect to the set $\{\phi, \bar{\phi}\}$ by means of the smooth complex coordinate mapping $$y \mapsto (z, \bar{z}), \quad z := \langle \phi^{\odot}, y \rangle.$$ The homological equation presently becomes $$A^{\odot \star}\mathcal{H}(z,\bar{z}) + R(\mathcal{H}(z,\bar{z})) = D_z\mathcal{H}(z,\bar{z})\dot{z} + D_{\bar{z}}\mathcal{H}(z,\bar{z})\dot{\bar{z}},$$ with center manifold expansion $$\mathcal{H}(z,\bar{z}) = z\phi + \bar{z}\bar{\phi} + \sum_{2 \le j+k \le 5} \frac{1}{j!k!} h_{jk} z^j \bar{z}^k + O(|z|^6).$$ Note that since the image of \mathcal{H} lies in the real space X, it follows that its coefficients satisfy $h_{kj} = \bar{h}_{jk}$. The derivatives \dot{z} and $\dot{\bar{z}}$ are given by (3.46) and its complex conjugate. Since fifth-order terms will be computed, we set N = 5 in the expansion (3.43) of R. The linear systems corresponding to the quadratic terms z^2 and $z\bar{z}$ in the homological equation are both non-singular, so Corollary 3.4 applies and gives $$h_{20}(\theta) = e^{2i\omega_0 \theta} \Delta (2i\omega_0)^{-1} D^2 F(0)(\phi, \phi),$$ $$h_{11}(\theta) = \Delta (0)^{-1} D^2 F(0)(\phi, \bar{\phi}).$$ (3.60) There are two linear systems corresponding to the cubic terms z^3 and $z^2\bar{z}$. The first of them is non-singular and may be solved by ordinary inversion, $$h_{30}(\theta) = e^{3i\omega_0\theta} \Delta (3i\omega_0)^{-1} [3D^2 F(0)(\phi, h_{20}) + D^3 F(0)(\phi, \phi, \phi)], \tag{3.61}$$ while the second one is singular, $$(i\omega_0 I - A^{\odot \star})h_{21} = \left[D^3 F(0)(\phi, \phi, \bar{\phi}) + D^2 F(0)(\bar{\phi}, h_{20}) + 2D^2 F(0)(\phi, h_{11})\right] r^{\odot \star} - 2c_1 \phi. \tag{3.62}$$ By the Fredholm Alternative this system is consistent if and only if $$c_1 = \frac{1}{2}p \Big[D^2 F(0)(\bar{\phi}, h_{20}) + 2D^2 F(0)(\phi, h_{11}) + D^3 F(0)(\phi, \phi, \bar{\phi}) \Big], \tag{3.63}$$ with h_{20} and h_{11} given by (3.60). This expression may be compared to [11, Theorem X.3.9]. By bordered inversion, the unique solution of (3.62) satisfying $\langle \phi^{\odot}, h_{21} \rangle = 0$ is $$h_{21}(\theta) = B_{i\omega_0}^{INV}(D^3F(0)(\phi,\phi,\bar{\phi}) + D^2F(0)(\bar{\phi},h_{20}) + 2D^2F(0)(\phi,h_{11}), -2c_1)(\theta),$$ (3.64) where we employed the notation introduced immediately following Corollary 3.7. From now on we assume that $$l_1(0) = \frac{1}{2\omega_0}(c_1 + \bar{c}_1) = \frac{1}{\omega_0} \operatorname{Re} c_1 = 0,$$ (3.65) since otherwise the Hopf bifurcation would be non-degenerate and there would be no reason to proceed. The assumption (3.65) simplifies certain bifurcation formulas below. Corresponding to the fourth-order terms z^4 , $z^3\bar{z}$ and $z^2\bar{z}^2$ we find three non-singular linear systems, but only two of them will appear in the expression for c_2 below. The system for h_{22} is easily solved to give $$h_{22}(\theta) = \Delta(0)^{-1} [2D^2 F(0)(\bar{\phi}, h_{21}) + 2D^2 F(0)(h_{11}, h_{11}) + 2D^2 F(0)(\phi, \bar{h}_{21}) + D^2 F(0)(h_{20}, \bar{h}_{20}) + D^3 F(0)(\bar{\phi}, \bar{\phi}, h_{20}) + D^3 F(0)(\phi, \phi, \bar{h}_{20}) + 4D^3 F(0)(\phi, \bar{\phi}, h_{11}) + D^4 F(0)(\phi, \phi, \bar{\phi}, \bar{\phi})],$$ (3.66) but for h_{31} we need to be more careful. The linear system is $$(2i\omega_0 I - A^{\odot *})h_{31} = \left[D^2 F(0)(\bar{\phi}, h_{30}) + 3D^2 F(0)(\phi, h_{21}) + 3D^2 F(0)(h_{11}, h_{20}) + 3D^3 F(0)(\phi, \bar{\phi}, h_{20}) + 3D^3 F(0)(\phi, \phi, h_{11}) + D^4 F(0)(\phi, \phi, \phi, \bar{\phi}) \right] r^{\odot *} - 6c_1 h_{20},$$ so the right-hand side is of the form $$[\cdots]r^{\odot \star} - 6c_1h_{20} = \begin{bmatrix} [\cdots] - 6c_1h_{20}(0) \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -6c_1h_{20} \end{bmatrix}. \tag{3.67}$$ By the linearity of the resolvent $(2i\omega_0 I - A^{\odot *})^{-1}$ and the form of h_{20} in (3.60) Corollary 3.4 applies separately to each of the two summands in the right-hand side of (3.67). This leads to $$h_{31}(\theta) = e^{2i\omega_0\theta} \Delta (2i\omega_0)^{-1} [D^2 F(0)(\bar{\phi}, h_{30}) + 3D^2 F(0)(h_{20}, h_{11}) + 3D^2 F(0)(\phi, h_{21}) + 3D^3 F(0)(\phi, \bar{\phi}, h_{20}) + 3D^3 F(0)(\phi, \phi, h_{11}) + D^4 F(0)(\phi, \phi, \phi, \bar{\phi})] - 6c_1 \Delta (2i\omega_0)^{-1} [\Delta'(2i\omega_0) - \theta \Delta (2i\omega_0)] h_{20}(\theta).$$ (3.68) The linear system corresponding to the fifth-order term $z^3\bar{z}^2$ involves c_2 and is singular. Applying the Fredholm Alternative yields the expression $$c_{2} = \frac{1}{12} p \Big[6D^{2}F(0)(h_{11}, h_{21}) + 3D^{2}F(0)(\bar{h}_{21}, h_{20}) + D^{2}F(0)(\bar{h}_{20}, h_{30}) \\ + 3D^{2}F(0)(\phi, h_{22}) + 2D^{2}F(0)(\bar{\phi}, h_{31}) + 6D^{3}F(0)(\bar{\phi}, h_{20}, h_{11}) \\ + 6D^{3}F(0)(\phi, h_{11}, h_{11}) + 3D^{3}F(0)(\phi, h_{20}, \bar{h}_{20}) + 6D^{3}F(0)(\phi, \bar{\phi}, h_{21}) \\ + 3D^{3}F(0)(\phi, \phi, \bar{h}_{21}) + D^{3}F(0)(\bar{\phi}, \bar{\phi}, h_{30}) + 6D^{4}F(0)(\phi, \phi, \bar{\phi}, h_{11}) \\ + 3D^{4}F(0)(\phi, \bar{\phi}, \bar{\phi}, h_{20}) + D^{4}F(0)(\phi, \phi, \phi, \bar{h}_{20}) + D^{5}F(0)(\phi, \phi, \phi, \bar{\phi}, \bar{\phi}) \Big],$$ (3.69) with all the appearing coefficients h_{jk} derived above. From c_2 we may
calculate the second Lyapunov coefficient as $$l_2(0) = \frac{1}{\omega_0} \operatorname{Re} c_2. \tag{3.70}$$ #### 3.5.4 Fold-Hopf At this bifurcation the spectrum $\sigma(A)$ contains a simple zero-eigenvalue λ_1 , a simple purely imaginary pair $\lambda_{2,3} = \pm i\omega_0$ with $\omega_0 > 0$, and there are no other purely imaginary eigenvalues. Let $\phi_0, \phi_1, \phi_0^{\odot}$ and ϕ_1^{\odot} be such that $$A\phi_0 = 0, \qquad A\phi_1 = i\omega_0\phi_1, \qquad A^*\phi_0^{\odot} = 0, \qquad A^*\phi_1^{\odot} = i\omega_0\phi_1^{\odot}$$ Akin to (3.52) it is always possible to choose these vectors such that the 'biorthogonality' relation $$\langle \phi_i^{\odot}, \phi_j \rangle = \delta_{ij} \qquad (i, j = 0, 1) \tag{3.71}$$ is satisfied. Furthermore, let q_0, q_1, p_0 and p_1 be corresponding column- and row vectors, as in Lemma 2.5. Any point y in the *real* three-dimensional center subspace X_0 corresponding to $\lambda_{1,2,3}$ can be uniquely expressed with respect to the set $\{\phi_0, \phi_1, \bar{\phi}_1\}$ by means of the smooth real-complex coordinate mapping² $$y \mapsto (z_0, z_1, \bar{z}_1), \qquad z_0 = \langle \phi_0^{\odot}, y \rangle \text{ and } z_1 = \langle \phi_1^{\odot}, y \rangle$$ (3.72) with $z = (z_0, z_1) \in \mathbb{R} \times \mathbb{C}$. The homological equation then becomes $$A^{\odot \star} \mathcal{H}(z,\bar{z}) + R(\mathcal{H}(z,\bar{z})) = D_{z_0} \mathcal{H}(z,\bar{z}) \dot{z}_0 + D_{z_1} \mathcal{H}(z,\bar{z}) \dot{z}_1 + D_{\bar{z}_1} \mathcal{H}(z,\bar{z}) \dot{\bar{z}}_1$$ with center manifold expansion given by $$\mathcal{H}(z_0, z_1, \bar{z}_1) = z_0 \phi_0 + z_1 \phi_1 + \bar{z}_1 \bar{\phi}_1 + \sum_{2 \le j+k+l \le 3} \frac{1}{j!k!l!} h_{jkl} z_0^j z_1^k \bar{z}_1^l + O(\|(z_0, z_1, \bar{z}_1)\|^4)$$ and with \dot{z} according to (3.47). In the expansion (3.43) of the non-linearity R we set N=3 since we will be calculating up to and including third-order coefficients. Note that, for the same reason as in the generalized Hopf case, one has $h_{ilk} = \bar{h}_{ikl}$. There are seven critical coefficients to be determined. The first three of them are found by looking at terms $z_0^j z_1^k \bar{z}_1^l$ with j+k+l=2 in the homological equation. This leads to four relevant systems, three of which are singular and correspond to resonant terms in the normal form. Their solutions are: $$h_{200}(\theta) = B_0^{INV}(D^2 F(0)(\phi_0, \phi_0), -p_0 D^2 F(0)(\phi_0, \phi_0))(\theta)$$ $$h_{020}(\theta) = e^{2i\omega_0\theta} \Delta (2i\omega_0)^{-1} D^2 F(0)(\phi_1, \phi_1)$$ $$h_{110}(\theta) = B_{i\omega_0}^{INV}(D^2 F(0)(\phi_0, \phi_1), -p_1 D^2 F(0)(\phi_0, \phi_1))(\theta)$$ $$h_{011}(\theta) = B_0^{INV}(D^2 F(0)(\phi_1, \bar{\phi}_1), -p_0 D^2 F(0)(\phi_1, \bar{\phi}_1))(\theta)$$ (3.73) By the Fredholm Alternative the appearing bordered inverses exist, provided $$G_{200} = \frac{1}{2}p_0 D^2 F(0)(\phi_0, \phi_0) \quad H_{110} = p_1 D^2 F(0)(\phi_0, \phi_1)$$ $$G_{011} = p_0 D^2 F(0)(\phi_1, \bar{\phi}_1)$$ (3.74) which fixes the quadratic normal form coefficients. For the four remaining coefficients we once more apply the Fredholm Alternative to the resonant $z_0^j z_1^k \bar{z}_1^l$ terms with j + k + l = 3. This leads to the expressions $$G_{300} = \frac{1}{6}p_0[3D^2F(0)(\phi_0, h_{200}) + D^3F(0)(\phi_0, \phi_0, \phi_0)]$$ $$G_{111} = p_0[D^2F(0)(\phi_0, h_{011}) + D^2F(0)(\bar{\phi}_1, h_{110}) + D^2F(0)(\phi_1, \bar{h}_{110}) + D^3F(0)(\phi_0, \phi_1, \bar{\phi}_1)]$$ $$+ D^3F(0)(\phi_0, \phi_1, \bar{\phi}_1)]$$ $$H_{210} = \frac{1}{2}p_1[D^2F(0)(\phi_1, h_{200}) + 2D^2F(0)(\phi_0, h_{110}) + D^3F(0)(\phi_0, \phi_0, \phi_1)]$$ $$H_{021} = \frac{1}{2}p_1[D^2F(0)(\bar{\phi}_1, h_{020}) + 2D^2F(0)(\phi_1, h_{011}) + D^3F(0)(\phi_1, \phi_1, \bar{\phi}_1)]$$ $$(3.75)$$ ²Clearly, our notation is a bit sloppy, in the sense that the second pairing in the r.h.s. of (3.72) really is the complexified counterpart of the first pairing. See Remark 2.2. for the cubic normal form coefficients, with the appearing h_{jkl} derived above. #### 3.5.5 Double Hopf At this bifurcation the spectrum $\sigma(A)$ contains two pairs $\lambda_{1,4} = \pm i\omega_1$ and $\lambda_{2,3} = \pm i\omega_2$ of purely imaginary eigenvalues. We assume that $\omega_1 > \omega_2 > 0$ and there are no other eigenvalues on the imaginary axis. Additionally, we suppose that the non-resonance condition (3.49) is satisfied. Let $\phi_{1,2}$ and $\phi_{1,2}^{\odot}$ be eigenvectors of A and A^* , $$A\phi_1 = +i\omega_1\phi_1$$, $A\phi_2 = +i\omega_2\phi_2$, $A^*\phi_1^{\odot} = +i\omega_1\phi_1^{\odot}$, $A^*\phi_2^{\odot} = +i\omega_2\phi_2^{\odot}$ and let $q_{1,2}$ and $p_{1,2}$ be corresponding column- and row vectors, as in Lemma 2.5. It is always possible to scale these vectors such that the 'biorthogonality' relation $$\langle \phi_i^{\odot}, \phi_j \rangle = \delta_{ij} \qquad (1 \le i, j \le 2)$$ (3.76) is satisfied. Moreover, any point y in the *real* four-dimensional center subspace X_0 can be expressed uniquely with respect to the set $\{\phi_1, \bar{\phi}_1, \phi_2, \bar{\phi}_2\}$ by means of the smooth complex coordinate mapping $$y \mapsto (z_1, z_2, \bar{z}_1, \bar{z}_2), \qquad z_1 = \langle \phi_1^{\odot}, y \rangle \text{ and } z_2 = \langle \phi_2^{\odot}, y \rangle$$ where $z = (z_1, z_2)$ is in \mathbb{C}^2 . The homological equation presently reads $$A^{\odot \star} \mathcal{H}(z,\bar{z}) + R(\mathcal{H}(z,\bar{z})) = D_{z_1} \mathcal{H}(z,\bar{z}) \dot{z}_1 + D_{\bar{z}_1} \mathcal{H}(z,\bar{z}) \dot{\bar{z}}_1 + D_{z_2} \mathcal{H}(z,\bar{z}) \dot{z}_2 + D_{\bar{z}_2} \mathcal{H}(z,\bar{z}) \dot{\bar{z}}_2$$ with \dot{z} given by (3.50) and a center manifold expansion of the form $$\mathcal{H}(z_1, \bar{z}_1, z_2, \bar{z}_2) = z_1 \phi_1 + \bar{z}_1 \bar{\phi}_1 + z_2 \phi_2 + \bar{z}_2 \bar{\phi}_2 + \sum_{2 \le j+k+l+m \le 5} \frac{1}{j!k!l!m!} h_{jklm} z_1^j \bar{z}_1^k z_2^l \bar{z}_2^m + O(\|(z_1, \bar{z}_1, z_2, \bar{z}_2)\|^6)$$ satisfying $h_{kjml} = \bar{h}_{jklm}$, and with N = 5 in expansion (3.43) of the non-linearity R. A total of ten critical coefficients needs to be determined. We start by collecting $z_1^j \bar{z}_1^k z_2^l \bar{z}_2^m$ -terms with j+k+l+m=2 in the homological equation. All relevant systems are non-singular and their solutions are: $$h_{1100}(\theta) = \Delta(0)^{-1}D^{2}F(0)(\phi_{1}, \bar{\phi}_{1})$$ $$h_{2000}(\theta) = e^{2i\omega_{1}\theta}\Delta(2i\omega_{1})^{-1}D^{2}F(0)(\phi_{1}, \phi_{1})$$ $$h_{1010}(\theta) = e^{i(\omega_{1}+\omega_{2})\theta}\Delta(i(\omega_{1}+\omega_{2}))^{-1}D^{2}F(0)(\phi_{1}, \phi_{2})$$ $$h_{1001}(\theta) = e^{i(\omega_{1}-\omega_{2})\theta}\Delta(i(\omega_{1}-\omega_{2}))^{-1}D^{2}F(0)(\phi_{1}, \bar{\phi}_{2})$$ $$h_{0020}(\theta) = e^{2i\omega_{2}\theta}\Delta(2i\omega_{2})^{-1}D^{2}F(0)(\phi_{2}, \phi_{2})$$ $$h_{0011}(\theta) = \Delta(0)^{-1}D^{2}F(0)(\phi_{2}, \bar{\phi}_{2})$$ (3.77) Note how the non-resonance condition is used to guarantee invertibility in the ordinary sense. Proceeding with cubic coefficients, we encounter a total of ten relevant systems. Six of these can be solved by ordinary inversion: $$\begin{split} h_{3000}(\theta) &= e^{3i\omega_1\theta} \Delta(3i\omega_1)^{-1} [3D^2 F(0)(h_{2000},\phi_1) + D^3 F(0)(\phi_1,\phi_1,\phi_1)] \\ h_{2010}(\theta) &= e^{i(2\omega_1+\omega_2)\theta} \Delta(i(2\omega_1+\omega_2))^{-1} [2D^2 F(0)(h_{1010},\phi_1) + D^2 F(0)(h_{2000},\phi_2) + D^3 F(0)(\phi_1,\phi_1,\phi_2)] \\ h_{2001}(\theta) &= e^{i(2\omega_1-\omega_2)\theta} \Delta(i(2\omega_1-\omega_2))^{-1} [2D^2 F(0)(h_{1001},\phi_1) + D^2 F(0)(h_{2000},\bar{\phi}_2) + D^3 F(0)(\phi_1,\phi_1,\bar{\phi}_2)] \\ h_{1020}(\theta) &= e^{i(\omega_1+2\omega_2)\theta} \Delta(i(\omega_1+2\omega_2))^{-1} [2D^2 F(0)(h_{1010},\phi_2) + D^2 F(0)(h_{0020},\phi_1) + D^3 F(0)(\phi_1,\phi_2,\phi_2)] \\ h_{1002}(\theta) &= e^{i(\omega_1-2\omega_2)\theta} \Delta(i(\omega_1-2\omega_2))^{-1} [2D^2 F(0)(h_{1001},\bar{\phi}_2) + D^2 F(0)(\bar{h}_{0020},\phi_1) + D^3 F(0)(\phi_1,\bar{\phi}_2,\bar{\phi}_2)] \\ h_{0030}(\theta) &= e^{3i\omega_2\theta} \Delta(3i\omega_2)^{-1} [3D^2 F(0)(h_{0020},\phi_2) + D^3 F(0)(\phi_2,\phi_2,\phi_2)] \end{split}$$ The remaining four systems correspond to resonant terms in the normal form. Using the Fredholm Alternative to ensure their solvability leads to the following expressions for the four cubic critical normal form coefficients: $$G_{2100} = \frac{1}{2} p_1 [2D^2 F(0)(h_{1100}, \phi_1) + D^2 F(0)(h_{2000}, \bar{\phi}_1) + D^3 F(0)(\phi_1, \phi_1, \bar{\phi}_1)]$$ $$G_{1011} = p_1 [D^2 F(0)(h_{0011}, \phi_1) + D^2 F(0)(h_{1001}, \phi_2) + D^2 F(0)(h_{1010}, \bar{\phi}_2)$$ $$+ D^3 F(0)(\phi_1, \phi_2, \bar{\phi}_2)]$$ $$H_{1110} = p_2 [D^2 F(0)(\bar{h}_{1001}, \phi_1) + D^2 F(0)(h_{1010}, \bar{\phi}_1) + D^2 F(0)(h_{1100}, \phi_2)$$ $$+ D^3 F(0)(\phi_1, \bar{\phi}_1, \phi_2)]$$ $$H_{0021} = \frac{1}{2} p_2 [2D^2 F(0)(h_{0011}, \phi_2) + D^2 F(0)(h_{0020}, \bar{\phi}_2) + D^3 F(0)(\phi_2, \phi_2, \bar{\phi}_2)]$$ $$(3.78)$$ We refrain from listing the fifth order critical normal form coefficients here, since the expressions are lengthy and, as remarked in §3.4.2, the cubic coefficients suffice to distinguish between 'simple' and 'difficult' double Hopf points. In case higher order coefficients are desired, we are confident that by now the reader is able to translate the expressions for the fifth order coefficients given for the ODE case in [24] to the present setting. ## Chapter 4 # Examples We work out two examples that illustrate the application of the formulas derived in §3.5. By contrasting a relatively simple DDE with a more involved and numerically challenging example, we hope to convince the reader that the results from the previous chapter are applicable to normalization problems of a varying degree of computational complexity. Together with the cusp example at the end of §3.3, the examples in this chapter exhaust Table 3.1. Clearly, the
evaluation of the formulas from §3.5 for the critical normal form coefficients requires information about the higher order derivatives of the right-hand side of (DDE). In §4.1 we briefly comment on the computation of such derivatives for the special case that the DDE is of discrete type. All DDE that appear in this chapter belong to this subclass. In §4.2 we obtain symbolic critical normal form coefficients for a Bogdanov-Takens bifurcation in a Van der Pol equation with delayed feedback. We explain how a discrete symmetry in the system necessitates the calculation of not only quadratic but also cubic coefficients and we compare our findings with literature results. In §4.3 we investigate codimension-two points on the stability boundary of the rest state of a neural mass model. We encounter double Hopf, fold-Hopf and Bautin (generalized Hopf) points and compute their critical normal forms. Our findings are presented largely in the form of a commented Maple worksheet. We hope that this example will serve as a sort of computational prototype for the numerical normal form analysis of other systems. The computations in this section are new. ### 4.1 Calculating symbolic derivatives for DDE of discrete type In general it is not possible to provide a concrete recipe for the computation of higher order derivatives of the right-hand side of (DDE), but in this section we will consider a special case that is frequently encountered in the applied literature. For simplicity we restrict our attention to an equilibrium at zero. We say that (DDE) is of **discrete type** if there exist delays $0 = \tau_0 < \tau_1 < \ldots < \tau_m = h$ for some $m \in \mathbb{N}$ and a function $f : \mathbb{R}^{n \times (m+1)} \to \mathbb{R}^n$ such that $$F(\phi) = f(\phi(-\tau_0), \phi(-\tau_1), \dots, \phi(-\tau_m)), \quad \forall \phi \in X.$$ (4.1) Here $\mathbb{R}^{n\times(m+1)}$ is the vector space of real matrices with n rows and m+1 columns. Let $E:X\to\mathbb{R}^{n\times(m+1)}$ be the bounded linear **evaluation operator** that evaluates elements of X in the points $-\tau_0,\ldots,-\tau_m,$ $$E\phi := \begin{bmatrix} \phi_1(0) & \phi_1(-\tau_1) & \cdots & \phi_1(-\tau_m) \\ \vdots & \vdots & & \vdots \\ \phi_n(0) & \phi_n(-\tau_1) & \cdots & \phi_n(-\tau_m) \end{bmatrix}, \quad \forall \phi \in X.$$ In these terms, $$F = f \circ E. \tag{4.2}$$ We regard first and higher order derivatives of F and f as linear and multilinear operators, respectively. The Banach space of bounded r-linear operators between Banach spaces V and W is denoted $\mathcal{L}^r(V, W)$. It is a consequence of (4.2) that if f is r-fold differentiable for some $r \in \mathbb{N}$, then F is also r-fold differentiable and $$D^{r}F(0)(\psi_{1},\dots,\psi_{r}) = \sum_{j_{1},\dots,j_{r}=1}^{n} \sum_{k_{1},\dots,k_{r}=0}^{m} D^{r}_{j_{1}k_{1},\dots,j_{r}k_{r}} f(0)\Psi_{1,j_{1}k_{1}} \dots \Psi_{r,j_{r}k_{r}}$$ (4.3) for all $\psi_1, \ldots, \psi_r \in X$, where for any $\psi \in X$ we write $\Psi := E\psi$. Here $D^r_{j_1k_1,\ldots,j_rk_r}f(0)$ is the rth order derivative of f at zero with respect to the entries at positions j_1k_1,\ldots,j_rk_r of its matrix argument in $\mathbb{R}^{n\times (m+1)}$. In particular, for the case r=1 we obtain the following well-known expression for the characteristic matrix. **Lemma 4.1.** For a DDE of discrete type the characteristic matrix is given by $$\Delta(z) = zI_n - \sum_{k=0}^{m} e^{-z\tau_k} D_k f(0)$$ (4.4) where $D_k f(0) \in \mathbb{R}^{n \times n}$ is the partial derivative of f with respect to the kth column of its matrix argument, evaluated at zero. *Proof.* For r=1 (4.3) gives, for any $\psi \in X$ with $\Psi := E\psi$, $$DF(0)\psi = \sum_{j=1}^{n} \sum_{k=0}^{m} D_{jk} f(0) \Psi_{jk} = \sum_{k=0}^{m} \sum_{j=1}^{n} D_{jk} f(0) \psi_{j}(-\tau_{k}) = \sum_{k=0}^{m} D_{k} f(0) \psi(-\tau_{k}).$$ In the last equality it was used that the partial derivative of f with respect to its kth column argument is the $n \times n$ matrix $$D_k f(0) = \begin{bmatrix} D_{1k} f(0) & D_{2k} f(0) & \cdots & D_{nk} f(0) \end{bmatrix}.$$ Hence the unique function $\eta \in \text{NBV}([0,h], \mathbb{R}^{n \times n})$ satisfying (2.14) is constant separately on each of the intervals $(\tau_0, \tau_1), [\tau_1, \tau_2), \ldots, [\tau_{m-1}, \tau_m)$ while it jumps by the amounts $D_k f(0)$ at the delays τ_k . Substituting η into (2.16) gives the expression for $\Delta(z)$. ### 4.2 Bogdanov-Takens bifurcation in a Van der Pol oscillator We consider the equation $$\ddot{x}(t) + \varepsilon(x^2(t) - 1)\dot{x}(t) + x(t) = \varepsilon g(x(t - \tau)), \tag{4.5}$$ where $\varepsilon > 0$ is a parameter, $\tau > 0$ is a delay parameter and $g : \mathbb{R} \to \mathbb{R}$ is a smooth function with g(0) = 0. In one interpretation (4.5) is the equation of motion of a unit point mass subject to nonlinear damping and delayed feedback. If g = 0 identically then we recover the well-known (unforced) Van der Pol equation, see for example [18, §2.1]. This system is representative for the class of Liénard systems, capable of self-sustained nonlinear oscillations. There appears to be a more recent interest in the delayed case, when g in (4.5) does not vanish identically. In [40] the analysis is restricted to *linear* delayed feedback. The authors identify a sequence of delay values for which the trivial equilibrium undergoes Hopf bifurcations. The direction of bifurcation is computed using the method of [20]. The follow-up study [22] with *nonlinear* delayed feedback presents a normal form analysis of a possibly denegerate Bogdanov-Takens bifurcation of the origin, using the method from [16] that was already mentioned in §1.2. In this first example we test the results from §3.5.2 by calculating a critical normal form for a Bogdanov-Takens bifurcation occurring in (4.5) with general g. We are interested in comparing our results with those found in [22], both in the non-degenerate and the degenerate case. #### 4.2.1 Linearization at the trivial equilibrium We start by rewriting (4.5) as the first order system $$\begin{cases} \dot{x}_1(t) = \tau x_2(t), \\ \dot{x}_2(t) = \tau(-x_1(t) - \varepsilon(x_1^2(t) - 1)x_2(t) + \varepsilon g(x_1(t-1))), \end{cases}$$ (4.6) where we have non-dimensionalized time as $t \to \frac{t}{\tau}$. As a consequence the delay τ is now an ordinary parameter and the state space $X = C([-1,0], \mathbb{R}^2)$ is parameter-independent. From (4.6) we see that the function $f: \mathbb{R}^{2\times 2} \to \mathbb{R}^2$ appearing in (4.1) with n=2 and m=1 is given by $$f(\phi(0), \phi(-1)) = \tau \begin{bmatrix} \phi_2(0) \\ -\phi_1(0) - \varepsilon(\phi_1^2(0) - 1)\phi_2(0) + \varepsilon g(\phi_1(-1)) \end{bmatrix}.$$ (4.7) The condition g(0) = 0 implies that the origin is a trivial equilibrium of (4.6). Using Lemma 4.1 we calculate the characteristic matrix, $$\Delta(z) = \begin{bmatrix} z & -\tau \\ \tau(1 - \varepsilon \alpha e^{-z}) & z - \tau \varepsilon \end{bmatrix}, \qquad \alpha := g'(0),$$ so the characteristic exponential polynomial is $$\det \Delta(z) = z^2 - \varepsilon \tau z + \tau^2 - \varepsilon \tau^2 \alpha e^{-z}. \tag{4.8}$$ The roots of this equation determine the local stability and bifurcation of the trivial equilibrium under parameter variations. Since $\tau > 0$, we can write the characteristic equation in terms of $w := \frac{z}{\tau}$ as $$w^2 - \varepsilon w + 1 - \varepsilon \alpha e^{-w\tau} = 0. \tag{4.9}$$ There is a one-to-one correspondence between the roots of (4.8) and the solutions of (4.9). Specifically, w is a solution of (4.9) in the left half plane (right half plane, imaginary axis) if and only if $z = \tau w$ is a root of (4.8) in the left half plane (right half plane, imaginary axis). The multiplicities of z and w are clearly the same. Remark 4.2. Had we not performed a time rescaling in passing from (4.5) to (4.6), then we would have directly found (4.9) as the characteristic equation. So, although we did perform the time rescaling to be in accordance with [22], as far as the characteristic equation is concerned it is a bit more convenient to work with (4.9) instead of (4.8) because the parameter τ appears only inside the exponential. One just has to correct nonzero eigenvalues with a factor τ or τ^{-1} when passing from one to the other. We regard α and τ as control parameters. For $\alpha = \varepsilon^{-1}$ (4.9) has a zero root for all values of $\tau > 0$ and no other roots on the imaginary axis. Expand (4.9) around w = 0 as $$w^2 - \varepsilon w + 1 - \varepsilon \alpha e^{-w\tau} = 1 - \varepsilon \alpha + \varepsilon (\alpha \tau - 1)w + \frac{1}{2}(2 - \varepsilon \alpha \tau^2)w^2 + \frac{1}{6}\varepsilon \alpha \tau^3 w^3 + O(w^4).$$ By inspection of the coefficients in this expansion, we see that w=0 is - an algebraically simple eigenvalue if $\alpha = \varepsilon^{-1}$ and $\tau \neq \varepsilon$, - a double eigenvalue if $\alpha = \varepsilon^{-1}$ and $\tau = \varepsilon$ with $\varepsilon \neq \sqrt{2}$, - a triple eigenvalue if $\alpha = \varepsilon^{-1}$ and $\tau = \varepsilon$ with $\varepsilon = \sqrt{2}$. Here we are interested in the second case, so from now on we assume that $$0 < \varepsilon < \sqrt{2}. \tag{4.10}$$ In this case all roots of (4.9) except w=0 are strictly in the left half-plane [40]. For the critical parameter values $(\alpha, \tau) = (\varepsilon^{-1}, \varepsilon)$ the equilibrium satisfies the Bogdanov-Takens bifurcation condition. A quadratic critical normal form is given by (3.44), provided the non-degeneracy conditions $a_2 \neq 0$ and $b_2 \neq 0$ are met. However, if one of the quadratic coefficients vanishes for example, because of symmetry - then the bifurcation is degenerate and the critical normal form must be augmented with cubic terms as in (3.45). So, in order to investigate a possible degeneracy we calculate a_2 and b_2 . #### 4.2.2 Calculation of normalized (generalized) eigenvectors
From (3.55)–(3.58) we see that we need (generalized) eigenvectors ϕ_0 and ϕ_1 , but we only require a left Jordan chain of Δ at zero and not the full (generalized) eigenvectors of Lemma 2.7. **Lemma 4.3.** Let column vectors q_0 and q_1 and row vectors p_1 and p_0 be given by $$q_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad q_1 = \begin{bmatrix} 0 \\ \varepsilon^{-1} \end{bmatrix}, \qquad p_1 = \begin{bmatrix} -\varepsilon & 1 \end{bmatrix}, \qquad p_0 = \begin{bmatrix} \varepsilon^{-1} & 0 \end{bmatrix}.$$ Then $\{q_0,q_1\}$ is a right Jordan chain of rank two for Δ at zero and the functions ϕ_0 and ϕ_1 given by $$\phi_0(\theta) = q_0, \qquad \phi_1(\theta) = \theta q_0 + q_1, \qquad \forall \theta \in [-1, 0],$$ (4.11) are an eigenvector and a generalized eigenvector of A corresponding to its zero eigenvalue. Similarly, $\{p_1, p_0\}$ is a left Jordan chain of rank two for Δ at zero. *Proof.* According to Definition 2.6 we have to choose $c, d \in \mathbb{R}$ such that $$\Delta(z)(q_0 + zq_1) = \begin{bmatrix} (1 - d\varepsilon)z + cz^2 \\ \varepsilon(1 - \frac{z}{2})z + \varepsilon cz^2 - d(\varepsilon^2 - z)z \end{bmatrix} = O(z^2)$$ as $z \to 0$. Taking into account (4.10) we see that c = 0 and $d = \varepsilon^{-1}$ are as required. The (generalized) eigenfunctions are then obtained from Lemma 2.7. Likewise the row vector $p_1 = [-\varepsilon, 1]^T$ spans the nullspace of $\Delta(0)^T$. Writing $p_0 = [c, d]^T$ for c and d to be determined, we see that $$(p_1 + zp_0)\Delta(z) = \left[(c - \frac{1}{2}\varepsilon + \varepsilon d)z^2 \right] (1 - \varepsilon c - \varepsilon^2 d)z + dz^2$$ up to and including $O(z^2)$. If d=0 and $c=\varepsilon^{-1}$ then this expression is $O(z^2)$. It remains to make sure that the normalization condition (3.52) is satisfied. Either from Proposition 2.9 or - for this simple example - by inspection, we see that the vectors $$\tilde{q}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad \tilde{q}_1 = \frac{1}{3} \begin{bmatrix} -\varepsilon^2 (2 - \varepsilon^2)^{-1} \\ 3\varepsilon^{-1} \end{bmatrix},$$ $$(4.12)$$ and $$\tilde{p}_1 = \frac{2\varepsilon}{2 - \varepsilon^2} \begin{bmatrix} -\varepsilon & 1 \end{bmatrix}, \qquad \tilde{p}_0 = \frac{2}{2 - \varepsilon^2} \begin{bmatrix} 1 & 0 \end{bmatrix}$$ (4.13) are such that (3.52) holds. #### 4.2.3 Quadratic critical normal form coefficients Now we are ready to substitute the previously computed ingredients into (3.55) and (3.56). We compute the second derivative of the right-hand side of (DDE) at zero by using (4.3) together with (4.7). We find $$D^{2}F(0)(\psi_{1},\psi_{2}) = \varepsilon^{2}\beta \begin{bmatrix} 0\\ \psi_{1,1}(-1)\psi_{2,1}(-1) \end{bmatrix}, \quad \forall \psi_{1},\psi_{2} \in X,$$ (4.14) where $\beta := g''(0)$. **Remark 4.4.** In this simple case it is not a problem to compute (4.14) by hand. However, as the degree of the derivative or the dimensions n and m increase, it may be better to use a computer algebra system. For example, with the DelayTools package installed and loaded into Maple, it is sufficient to enter ``` > E := rcurry(DDE[eval_at_delays], [0, 1]); > DDE[diff](f, E, 2, [psi[1], psi[2]]); ``` Here it is assumed that f is available as a Vector-valued function (not an expression) corresponding to (4.7) and psi is a list of two Vector-valued functions that correspond to the arguments of the bilinear form (4.14). For instance, these may be the (generalized) eigenfunctions from §4.2.2. Of course the foregoing also applies to the third order derivative (4.17) in §4.2.4 below. Using (4.14) together with (4.11)–(4.13) we evaluate a_2 and b_2 from (3.55) and (3.56) as $$a_2 = \frac{\varepsilon^3 \beta}{2 - \varepsilon^2}, \quad b_2 = -\frac{4\varepsilon^3 (3 - \varepsilon^2)\beta}{3(2 - \varepsilon^2)^2}$$ (4.15) and we conclude that these expressions are identical to those found in [22] using a more elaborate method. We make the following observations regarding (4.15). - 1. Suppose that g is an odd function. Then (4.6) has a \mathbb{Z}_2 -symmetry: It is invariant under the substitution $x \to -x$. Since a smooth odd function has a vanishing second derivative at the origin, it follows that $\beta = 0$, so $a_2 = b_2 = 0$ and the bifurcation is degenerate. Instead of (3.44) the cubic critical normal form (3.45) should be used. - 2. If $\varepsilon = \sqrt{3}$ then b_2 vanishes while a_2 may or may not vanish depending on whether or not β vanishes. As above it is then necessary to proceed with a calculation of the cubic normal form. - 3. If $\varepsilon = \sqrt{2}$ then (4.10) is violated and a_2 and b_2 either both diverge (when $\beta \neq 0$) or are both indeterminate (when $\beta = 0$). We recall from §4.2.1 that in this case $\lambda = 0$ degenerates from a double to a triple eigenvalue. In the last section of this example we will discuss the first case. #### 4.2.4 Degeneracy and cubic critical normal form coefficients Let us assume that (4.10) holds and that $\beta = 0$. It then follows from (4.14) and (4.15) that $$D^2F(0) = 0, a_2 = 0, b_2 = 0,$$ (4.16) and calculation of the cubic coefficients a_3 and b_3 in (3.45) becomes necessary. The third order derivative of the right-hand at zero is computed to be $$D^{3}F_{1}(0)(\psi_{1}, \psi_{2}, \psi_{3}) = 0,$$ $$D^{3}F_{2}(0)(\psi_{1}, \psi_{2}, \psi_{3}) = -2\varepsilon^{2}(\psi_{1,2}(0)\psi_{2,1}(0)\psi_{3,1}(0) + \psi_{1,1}(0)\psi_{2,2}(0)\psi_{3,1}(0) + \psi_{1,1}(0)\psi_{2,1}(0)\psi_{3,2}(0) - \frac{1}{2}\gamma\psi_{1,1}(-1)\psi_{2,1}(-1)\psi_{3,1}(-1)),$$ $$(4.17)$$ for all ψ_1, ψ_2 and ψ_3 in X and with $\gamma := g^{(3)}(0)$. The expressions for the cubic coefficients in (3.57) and (3.58) simplify considerably when (4.16) is taken into account. Indeed, for a_3 we find $$a_3 = \frac{1}{6}p_1 \cdot D^3 F(0)(\phi_0, \phi_0, \phi_0) = \frac{\varepsilon^3 \gamma}{3(2 - \varepsilon^2)},$$ (4.18) where (4.11)–(4.13) and (4.17) were used in the second equality. Likewise, for b_3 we obtain $$b_{3} = \frac{1}{2}p_{1} \cdot D^{3}F(0)(\phi_{0}, \phi_{0}, \phi_{1}) + \frac{1}{2}p_{0} \cdot D^{3}F(0)(\phi_{0}, \phi_{0}, \phi_{0}),$$ $$= -\frac{2\varepsilon^{2}}{2 - \varepsilon^{2}} \left(1 + \frac{\varepsilon(3 - \varepsilon^{2})\gamma}{3(2 - \varepsilon^{2})} \right).$$ (4.19) These expressions for a_3 and b_3 are identical to those reported in [22]. #### 4.3 Codimension-two Hopf bifurcations in a neural mass model The calculations in the previous section were of a symbolic nature and could be carried out by hand without too much difficulty. In contrast, in this section we will discuss an example that requires a numerical approach. All calculations were performed in Maple 13 using standard double precision. Self-contained parts of the Maple worksheet have been reproduced below. Since the code is quite elementary, we hope that it is clear how to adapt it to other platforms. The worksheet used to perform all computations in the following subsections can be obtained by email from the author. #### 4.3.1 Model introduction In [38] the following non-dimensionalized model of two interacting layers of neurons was considered: $$\begin{cases} \dot{x}_1(t) = -x_1(t) - ag(bx_1(t - \tau_1)) + cg(dx_2(t - \tau_2)) \\ \dot{x}_2(t) = -x_2(t) - ag(bx_2(t - \tau_1)) + cg(dx_1(t - \tau_2)) \end{cases}$$ (4.20) We will not address modelling questions here, but only give a brief summary. The variables $x_1(t)$ and $x_2(t)$ represent the population-averaged neural activity at time t in layers one and two, respectively. The parameter a > 0 is a measure of the strength of inhibitory feedback, while c > 0 measures the strength of the excitatory effect of one layer on the other. The parameters b > 0 and d > 0 are saturation rates and the delays $\tau_{1,2} > 0$ represent time lags in the inhibitory feedback loop and excitatory inter-layer connection. Finally, the function $g: \mathbb{R} \to \mathbb{R}$ is of the sigmoidal form $$g(z) := [\tanh(z-1) + \tanh(1)] \cosh^2(1) \qquad (z \in \mathbb{R})$$ (4.21) In fact, the detailed form of g is not relevant to the subsequent calculations. Only the values of g and its first five derivatives at zero enter the calculations. In accordance with [38] we fix the numerical values $$b = 2.0, \quad d = 1.2, \quad \tau_1 = 12.7, \quad \tau_2 = 20.2$$ (4.22) We consider the feedback strengths a and c as free control parameters. Analysis of (4.20) by the authors of [38] is still in progress. I am happy that they nonetheless allowed me to use their model as a test case for the normalization techniques described in this manuscript. #### 4.3.2 Linearization and the characteristic equation It is apparent from (4.20) and (4.21) that the origin $(x_1, x_2) = (0, 0)$ is an equilibrium for all possible parameter values. Since the system is symmetric with respect to the interchange of the labels of layers one and two, equilibria are always of the form $(x_1, x_2) = (x^*, x^*)$ for some $x^* \in \mathbb{R}$. Clearly, only the case $x^* \geq 0$ is physically relevant. In total, the number of simultaneously present equilibria lies between one and three and they are found as solutions of the transcendental equation $$x^* + aq(bx^*) - cq(dx^*) = 0 (4.23)$$ Note that this equation (and henceforth the location of equilibria) does not depend on the values of the delays τ_1 and τ_2 . In Figure 4.1 a specific one-parameter bifurcation diagram is presented. Obviously this diagram is not exhaustive, but it serves to give an impression of the behaviour of solutions of (4.23). Linearizing (4.20) around an equilibrium (x^*, x^*) yields the system $$\begin{cases} \dot{x}_1(t) = -x_1(t) - k_1 x_1(t - \tau_1) + k_2 x_2(t - \tau_2) \\ \dot{x}_2(t) = -x_2(t) - k_1 x_2(t - \tau_1) + k_2 x_1(t - \tau_2) \end{cases}$$ (4.24) where $$k_1 := abg'(bx^*), \qquad k_2 := cdg'(dx^*) \tag{4.25}$$ Introducing $x := (x_0, x_1)$ we can write (4.24) in the form
$$\dot{x}(t) = -\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} x(t) - k_1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} x(t - \tau_1) + k_2 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} x(t - \tau_2)$$ (4.26) From here on we will focus exclusively on the trivial equilibrium $(x^*, x^*) = (0, 0)$. This equilibrium corresponds to a quiescent state in which both neural layers are at rest. Following [38] we will analyze the linearization in terms of k_1 and k_2 , noting from (4.25) that $$a = \frac{k_1}{bg'(0)}, \qquad c = \frac{k_2}{dg'(0)}$$ (4.27) so there is a one-to-one correspondence between critical values of the control parameters a and c on the one hand and $k_{1,2}$ on the other hand. Since we have no desire to treat one of the delays $\tau_{1,2}$ as a bifurcation parameter, there is no need to perform a scaling by the delay time as in §4.2. Setting $h := \max(\tau_1, \tau_2) > 0$ we observe that corresponding to (4.26) there exists a unique kernel $\eta_{k_1,k_2} \in \text{NBV}([0,h],\mathbb{R}^2)$ such that $$\dot{x}(t) = \int_0^h d\eta_{k_1, k_2}(\theta) x_t(-\theta)$$ From (4.26) we see that η_{k_1,k_2} is given by $$\eta_{k_1,k_2}(\theta) = -\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbb{1}_{(0,\infty)}(\theta) - k_1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbb{1}_{[\tau_1,\infty)}(\theta) + k_2 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \mathbb{1}_{[\tau_2,\infty)}(\theta)$$ (4.28) for $\theta \in \mathbb{R}$. Hence the characteristic matrix is $$\Delta_{k_1,k_2}(\lambda) = \begin{bmatrix} \lambda + 1 + k_1 e^{-\lambda \tau_1} & -k_2 e^{-\lambda \tau_2} \\ -k_2 e^{-\lambda \tau_2} & \lambda + 1 + k_1 e^{-\lambda \tau_1} \end{bmatrix}$$ (4.29) the determinant of which leads to the characteristic equation $$\Delta_{k_1,k_2}^+(\lambda)\Delta_{k_1,k_2}^-(\lambda) = 0 \tag{4.30}$$ with $$\Delta_{k_1,k_2}^{\pm} := 1 + \lambda + k_1 e^{-\lambda \tau_1} \pm k_2 e^{-\lambda \tau_2}$$ As was shown in [38] and can easily be checked by the reader, fold bifurcations occur on the curves in the (k_1, k_2) -plane defined by the equations $$1 + k_1 + k_2 = 0, 1 + k_1 - k_2 = 0 (4.31)$$ **Figure 4.1:** The graph of the left-hand side of (4.23) as a function of x^* for $a = \frac{2}{29}$, b and d as in (4.22) and values of the parameter c as indicated. The origin is always an equilibrium. In (a) it is the only equilibrium present, but in (b) it coexists with two non-zero equilibria that were born in a saddle-node bifurcation occurring for some $c \in (\frac{15}{29}, \frac{18}{29})$. In (c) this situation persists qualitatively, but in (d) a transcritical bifurcation has lead to an exchange of stability between the trivial equilibrium and the left-most member of the saddle-node pair. while Hopf bifurcations from an eigenvalue $i\omega$ occur on the curves parametrized by ω as $$\begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \frac{1}{\sin(\omega(\tau_2 - \tau_1))} \begin{bmatrix} \sin \omega \tau_2 & -\cos \omega \tau_2 \\ -\sin \omega \tau_1 & \cos \omega \tau_1 \end{bmatrix} \begin{bmatrix} -1 \\ \omega \end{bmatrix} \qquad (\omega > 0)$$ (4.32) and $$\begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \frac{1}{\sin(\omega(\tau_2 - \tau_1))} \begin{bmatrix} \sin \omega \tau_2 & -\cos \omega \tau_2 \\ \sin \omega \tau_1 & -\cos \omega \tau_1 \end{bmatrix} \begin{bmatrix} -1 \\ \omega \end{bmatrix} \qquad (\omega > 0)$$ (4.33) with singularities for $$\omega = \frac{m\pi}{\tau_2 - \tau_1} =: \omega_s(m) \qquad (m \in \mathbb{N})$$ (4.34) It will come as no surprise that analytic results are difficult to obtain for the characteristic equation (4.30). Some observations can however be made. In [38] it was shown that the origin is a locally stable equilibrium of (4.20) for (k_1, k_2) strictly contained in the circle of radius $\frac{1}{2}\sqrt{2}$ centered at the origin in the (k_1, k_2) parameter plane. In Figure 4.2 we depict and discuss the structure of the fold and Hopf bifurcation curves in the (k_1, k_2) -plane near the origin. It is seen that the quiescent (zero) equilibrium typically looses its stability in an Andronov-Hopf bifurcation, but additionally various codimension-two points exist. In §4.3.4 we will compute the direction of Hopf bifurcation and give a precise account of all the relevant codimension-two points that exist in Figure 4.2. In order to do this, we need some preparations. In the following subsection we take a break and divert from the main course of argument by explaining how the bookkeeping of higher-order derivatives of the system (4.20) may be done in a clear, efficient manner. #### 4.3.3 System specification in Maple The computations that follow are conveniently performed in a computer algebra system such as Maple, capable of both symbolic as well as numerical calculations. To present our results, we proceed as follows. In the present subsection we propose an 'initialization' of the system (4.20), its fixed parameters and derivatives. The reader who is interested in checking our computations should enter this code into an empty Maple worksheet. In the later subsections we will add bits of code to this worksheet to perform various normal form computations. From here on, we adopt the convention that variables written in verbatim font correspond to Maple variables. So, if we write q or lambda we refer to Maple variables and these correspond to the 'ordinary' variables q and λ in the main text. We start with ``` > restart; > with(LinearAlgebra): > Digits:=15; > interface(showassumed=0); > assume(theta,'real'); ``` Then we define system parameters. The parameters n and r are the dimension of the system (??) and the number of delays. The other parameters are as in (4.22). Note that tau[0] is the 'zero-delay' appearing in (??). Figure 4.2: The (k_1, k_2) -parameter plane near the origin for parameter values as in (4.22). Shown in black and red are curves of Hopf bifurcation, parametrized by (4.32) and (4.33), respectively. The straight blue lines correspond to the fold curves (4.31). The curve parameter ω was varied in the interval $[0, \omega_s(1)]$ with $\omega_s(1)$ as in (4.34). For values $\omega > \omega_s(1)$ the plane becomes gradually filled with Hopf curves, but the stable region surrounding the origin remains unaltered. As can be seen from the curve parametrizations, the fold curves do not depend on any fixed system parameters (excluding the free parameters k_1 and k_2) while the Hopf curves depend only on τ_1 and τ_2 . We note a symmetry between the upper and lower half-plane and remark that only the positive quadrant is physically relevant, although in general bifurcation points sufficiently close to the quadrant's boundary may still be 'felt' in the quadrant's interior. However, such points do not exist in the above figure. For example, the Bogdanov-Takens point at the crossing of the two blue lines lies too far in the negative half-plane to warrant analysis. These parameters are global in the worksheet. They are read (but not altered) by the various procedures that follow. Next, we code the function g from (4.21) and its derivatives (up to and including order three for double Hopf and fold-Hopf points and up to and including order five for Bautin points) at zero. ``` > g:=z->(tanh(z-1.0)+tanh(1.0))*cosh(1.0)^2; > dg:=D(g)(0); > d2g:=(D@02)(g)(0); > d3g:=(D@03)(g)(0); > d4g:=(D@04)(g)(0); > d5g:=(D@05)(g)(0); ``` We also provide the characteristic matrix as a function of λ , as well as its first two derivatives. (The second derivative is not needed in the present subsection, but it will be required in §4.3.6 below.) Moreover, we provide procedures D2F and D3F that take as input two or three expressions (not functions) in \mathbb{R}^n depending on a variable theta and output the second or third Fréchet-derivative of the right-hand side of (4.20) at zero, evaluated at the input expression(s). For these procedures we use the results (??) and (??) found in the previous subsection. The conversion of input expressions into arrays (see the remark at the end of §4.1) is done internally. For D2F we have ``` > D2F:=proc(phi,psi) > local PHI,PSI,i,j; > global a,b,c,d,n,r,g,tau; > PHI:=Array(1..n,0..r); > PSI:=Array(1..n,0..r); > for i from 1 to n do for j from 0 to r do > PHI[i,j]:=eval(phi[i],theta=-tau[j]); PSI[i,j]:=eval(psi[i],theta=-tau[j]); end do; > end do; > return(<-a*d2g*b^2*PHI[1,1]*PSI[1,1]+c*d2g*d^2*PHI[2,2]*PSI[2,2],</p> -a*d2g*b^2*PHI[2,1]*PSI[2,1]+c*d2g*d^2*PHI[1,2]*PSI[1,2]>) > > end: ``` while for D3F we have ``` > D3F:=proc(phi,psi,chi) > local PHI,PSI,CHI,i,j; > global a,b,c,d,n,r,g,tau; > PHI:=Array(1..n,0..r); > PSI:=Array(1..n,0..r); > CHI:=Array(1..n,0..r); > for i from 1 to n do for j from 0 to r do PHI[i,j]:=eval(phi[i],theta=-tau[j]); PSI[i,j]:=eval(psi[i],theta=-tau[j]); CHI[i,j]:=eval(chi[i],theta=-tau[j]); end do; end do; > > return(<-a*d3g*b^3*PHI[1,1]*PSI[1,1]*CHI[1,1] +c*d3g*d^3*PHI[2,2]*PSI[2,2]*CHI[2,2], -a*d3g*b^3*PHI[2,1]*PSI[2,1]*CHI[2,1] +c*d3g*d^3*PHI[1,2]*PSI[1,2]*CHI[1,2]>) > end: ``` This suffices for double Hopf and fold-Hopf points. In §4.3.7 we will compute the second Lyapunov coefficient (a fifth order coefficient) for a Bautin point that we shall encounter in §4.3.4. For this we also need to provide Maple procedures for fourth and fifth order Fréchet-derivatives of the right-hand side of (4.20). These were not computed in §4.1 to avoid tedious repetitions, but we believe that their form is easily deduced from the pattern provided by (??) and (??). For D4F we define ``` > D4F:=proc(phi,psi,chi,zeta) > local PHI,PSI,CHI,ZETA,i,j; > global a,b,c,d,n,r,g,tau; > PHI:=Array(1..n,0..r); > PSI:=Array(1..n,0..r); > CHI:=Array(1..n,0..r); > ZETA:=Array(1..n,0..r); > for i from 1 to n do > for j from 0 to r do > PHI[i,j]:=eval(phi[i],theta=-tau[j]); PSI[i,j]:=eval(psi[i],theta=-tau[j]); CHI[i,j]:=eval(chi[i],theta=-tau[j]); ZETA[i,j]:=eval(zeta[i],theta=-tau[j]); end do; > end do; ``` ```
> return(<-a*d4g*b^4*PHI[1,1]*PSI[1,1]*CHI[1,1]*ZETA[1,1] +c*d4g*d^4*PHI[2,2]*PSI[2,2]*CHI[2,2]*ZETA[2,2], -a*d4g*b^4*PHI[2,1]*PSI[2,1]*CHI[2,1]*ZETA[2,1] +c*d4g*d^4*PHI[1,2]*PSI[1,2]*CHI[1,2]*ZETA[1,2]>) > > end: and, finally, for D5F we have > D5F:=proc(phi,psi,chi,zeta,eta) > local PHI,PSI,CHI,ZETA,ETA,i,j; > global a,b,c,d,n,r,g,tau; > PHI:=Array(1..n,0..r); > PSI:=Array(1..n,0..r); > CHI:=Array(1..n,0..r); > ZETA:=Array(1..n,0..r); > ETA:=Array(1..n,0..r); > for i from 1 to n do for j from 0 to r do > PHI[i,j]:=eval(phi[i],theta=-tau[j]); PSI[i,j]:=eval(psi[i],theta=-tau[j]); CHI[i,j]:=eval(chi[i],theta=-tau[j]); ZETA[i,j]:=eval(zeta[i],theta=-tau[j]); ETA[i,j]:=eval(eta[i],theta=-tau[j]); end do; > end do: > return(<-a*d5g*b^5*PHI[1,1]*PSI[1,1]*CHI[1,1]*ZETA[1,1]*ETA[1,1]</pre> +c*d5g*d^5*PHI[2,2]*PSI[2,2]*CHI[2,2]*ZETA[2,2]*ETA[2,2], > -a*d5g*b^5*PHI[2,1]*PSI[2,1]*CHI[2,1]*ZETA[2,1]*ETA[2,1] > +c*d5g*d^5*PHI[1,2]*PSI[1,2]*CHI[1,2]*ZETA[1,2]*ETA[1,2]>) > end: ``` This concludes the initialization part of the worksheet. In all our subsequent Maple computations we will assume that these definitions have been executed in the active Maple session. #### 4.3.4 Identification of codimension-two points We now return to Figure 4.2. Various codimension-two points reveal their presence as points of intersection of the black, red and blue lines. Furthermore, the direction of bifurcation along the Hopf curves may change at a Bautin bifurcation. It is natural to start our computations by calculating this direction of bifurcation, i.e. calculating the first Lyapunov coefficient along the black and red curves in the positive quadrant of the (k_1, k_2) -plane. Using the Maple definitions provided in §4.3.3 this is not very difficult. Suppose that L is a vector that parametrizes the black curve in Figure 4.2. Let omega0 be an admissible frequency. We are interested in computing the direction of bifurcation at the point ``` > k1:=eval(L[1],omega=omega0); > k2:=eval(L[2],omega=omega0); ``` in the (k_1, k_2) -plane. Using (4.27) we set the system control parameters and the critical eigenvalue accordingly: ``` > a:=k1/(b*dg); c:=k2/(d*dg); > lambda0:=I*omega0; ``` It is easily checked that the vectors q := (1, -1) and $p := (1, -1)^T$ satisfy $\Delta(\lambda_0)q = 0$ and $p\Delta(\lambda_0) = 0$, independently of omega0. Using Lemma 2.5 to satisfy the 'biorthogonality' condition (3.59) we normalize these vectors as ``` > q:=<1,-1>; p:=Transpose(<1,-1>); > alpha:=1/sqrt(p.DDelta(lambda0).q); > q:=alpha*q; p:=alpha*p; ``` Next, we define the eigenfunction ϕ corresponding to the eigenvector q, as well as its complex conjugate. ``` > phi:=exp(lambda0*theta)*q; > phibar:=map(conjugate,phi); ``` Everything is ready to compute the quantity in (3.63) and, from that and (3.65), the first Lyapunov coefficient l_1 . ``` > h:=Array(0..2,0..2); > h[2,0]:=exp(2*lambda*theta)*MatrixInverse(Delta(2*lambda)).D2F(phi,phi); > h[1,1]:=MatrixInverse(Delta(0)).D2F(phi,phibar); > c1:=(1/2)*p.(D2F(phibar,h[2,0])+2*D2F(phi,h[1,1])+D3F(phi,phi,phibar)); > 11:=(1/omega0)*Re(c1); ``` This is all there is to calculating the direction of Hopf bifurcation along the black curve in Figure 4.2. A similar procedure can be followed to compute the direction along the red curve. We have wrapped the above code in a Maple procedure (not reproduced here, but available by email) to graph the plot in Figure 4.3. We are now in a position to identify the codimension-two points in the positive quadrant in Figure 4.2, also see Figure 4.4. Solving numerically for the two Bautin (generalized Hopf) points yields $$(k_1^c, k_2^c) = (0.503730243249497, 0.697442362012240)$$ $$\omega_0 = 0.275909434388554$$ (GH1) for the point on the red curve, and $$(k_1^c, k_2^c) = (0.513230584432908, 0.745286219214126)$$ $\omega_0 = 0.172217243841191$ (GH2) for the point on the black curve. Figure 4.3: The first Lyapunov coefficient computed along the portions of the black and red curves that lie in right-half plane in Figure 4.2. Fixed parameter values are as in (4.22). Both graphs cross the horizontal axis, each once. Thus there exist two Bautin-points, one on each curve. In fact, the Lyapunov coefficient along the black curve diverges near the start of the ω_0 -interval and becomes negative left of the singularity. (This is not visible in the plot.) Likewise, l_1 diverges along the red curve near the end of this interval and becomes negative right of the singularity. The points of divergence coincide with points of fold-Hopf bifurcation, as explained in the main text. Figure 4.4: In 4.4(a) we see the positive quadrant of Figure 4.2 to which we added the data computed in §4.3.4. Fixed parameter values are as in (4.22). A dashed line corresponds to a subcritical Andronov-Hopf bifurcation, while a solid line indicates a supercritical direction. The labels for the codimension-two points are chosen for consistency with standard MATCONT notation. $\mathbf{ZH} = \text{zero-Hopf}$ (fold-Hopf) $\mathbf{HH} = \text{Hopf-Hopf}$ (double Hopf) $\mathbf{GH} = \text{generalized Hopf}$. 4.4(b) is a magnification of the upper left portion of 4.4(a). Note that at the fold-Hopf points ZH1 and ZH2 the direction of Hopf bifurcation changes. At these points the first Lyapunov coefficient does not vanish, but rather it diverges, as was already noted in the caption of Figure 4.3. The 1:1-resonance occurs at $$(k_1^c, k_2^c) = (1.02601931196937, 0.0) (\omega_1, \omega_2) = (0.229598842623607, 0.229598842623607)$$ (1:1) and the characteristic matrix $\Delta_{k_1,k_2}(\lambda)$ from (4.29) reduces to the zero-matrix at $\lambda = i\omega_1 = i\omega_2$. Therefore the resonance is *semisimple* in the sense that the characteristic matrix possesses two independent null-vectors. This situation requires special treatment for which §3.5 lacks results. (Compare this to the remark made at the bottom of p.424 in [25] in conjunction with a 1:1 resonance for maps.) Instead, we choose to focus on the more 'standard' fold-Hopf and double Hopf points in Figure 4.2. The double Hopf point occurs at $$(k_1^c, k_2^c) = (0.180751807497717, 0.927849704599635)$$ $(\omega_1, \omega_2) = (0.289979003927627, 0.156040086681052)$ (HH) The non-resonance condition (3.49) is satisfied, $$n_1\omega_1 \neq n_2\omega_2$$ for all $n_1, n_2 \in \mathbb{N}$ with $n_1 + n_2 \leq 5$ For $(n_1, n_2) = (1, 2)$ we have $$n_1\omega_1 - n_2\omega_2 = 0.022101169434477$$ and this (n_1, n_2) -pair minimizes the absolute value of the difference of the left-hand and right-hand sides of (4.3.4) over all relevant combinations of n_1 and n_2 . The third codimension-two point present in the positive quadrant is the fold-Hopf point. Its coordinates are $$(k_1^c, k_2^c) = (0.00760034373723105, 1.00760034373723)$$ $$\omega_0 = 0.148557497656540$$ (ZH1) In this example we will compute the critical normal forms of the points DH, FH1 and GH1, since these are the codimension-two points that lie on the stability boundary of the origin in the positive quadrant of the (k_1, k_2) -plane. The points labeled FH2 and GH2 do no lie on this boundary and therefore we will not compute their critical normal forms. (We are however confident that the interested reader can do this himself after learning about the computations below.) #### 4.3.5 The double Hopf point In this subsection we will show that for the critical parameter values $$a_c = \frac{k_1^c}{bg'(0)} = 0.0903759037488591, \qquad c_c = \frac{k_2^c}{dg'(0)} = 0.773208087166367$$ (4.35) with (k_1^c, k_2^c) as in (HH) and all other parameters as in (4.22), the equilibrium (0,0) of (4.20) exhibits a 'simple' non-degenerate double Hopf bifurcation. (Here 'simple' refers to the positive sign of the product appearing in (??). We will return to this point below.) Using the definitions and procedures from §4.3.3 we process data specific to the double Hopf point to calculate the third-order critical normal form coefficients. First we set the critical parameters and eigenvalues. ``` > k1:=0.180751807497717; k2:=0.927849704599635; (**) > a:=k1/(b*dg); c:=k2/(d*dg); > omega1:=0.289979003927627; omega2:=0.156040086681052; > lambda1:=I*omega1; lambda2:=I*omega2; ``` We proceed by computing the critical eigenvectors. Let $\Delta(\lambda_{1,2})$ be the characteristic matrices from (4.29) evaluated at the critical eigenvalues $\lambda_{1,2} = i\omega_{1,2}$. The column- and row vectors $$q_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad p_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad q_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad p_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$ are such that $$\Delta(\lambda_1)q_1 = 0$$, $p_1\Delta(\lambda_1) = 0$, $\Delta(\lambda_2)q_2 = 0$, $p_2\Delta(\lambda_2) = 0$ (Compare this with the introduction in §3.5.5.) We have to scale q_1 , p_1 and q_2 , p_2 with constants $\alpha_1, \beta_1 \in \mathbb{C}$ and $\alpha_2, \beta_2 \in \mathbb{C}$ in such a way that the 'biorthogonality' relationship (3.76) is satisfied. For this we use (2.18) from Lemma 2.5 and Lemma 2.4. ``` > q1:=<1,1>;> p1:=Transpose(<1,1>); > q2:=<1,-1>; p2:=Transpose(<1,-1>); > alpha1:=1/sqrt(p1.DDelta(lambda1).q1); beta1:=alpha1; > alpha2:=1/sqrt(p2.DDelta(lambda2).q2); beta2:=alpha2; > q1:=alpha1*q1; p1:=beta1*p1; > q2:=alpha2*q2; p2:=beta2*p2; ``` (We have chosen the scaling constants in such a way that, in addition to satisfying (3.76), the vectors are of comparable numerical magnitude.) Using Lemma 2.5 we define the corresponding critical eigenfunctions and their complex conjugates. (Here we use the assumption that theta is real.) Note that these are expressions, rather than Maple functions. ``` > phi1:=exp(lambda1*theta)*q1; > phi1bar:=map(conjugate,phi1); > phi2:=exp(lambda2*theta)*q2; > phi2bar:=map(conjugate,phi2); ``` Now it is easy to compute the quadratic critical center manifold coefficients from (3.77). We also require their complex conjugates. ``` >
hbar[1,1,0,0]:=map(conjugate,h[1,1,0,0]); > hbar[2,0,0,0]:=map(conjugate,h[2,0,0,0]); > hbar[1,0,1,0]:=map(conjugate,h[1,0,1,0]); > hbar[1,0,0,1]:=map(conjugate,h[1,0,0,1]); > hbar[0,0,2,0]:=map(conjugate,h[0,0,2,0]); > hbar[0,0,1,1]:=map(conjugate,h[0,0,1,1]); ``` At last we are able to compute the cubic critical normal form coefficients as in (3.78). (We use gg instead of g since the latter symbol has already been defined.) They evaluate to ``` \begin{split} g_{2100} &= 0.0113599727138386 + 0.0025880313644929 \, i \\ g_{1011} &= 0.0065770995240054 - 0.0112835232180977 \, i \\ g_{1110} &= 0.0072326241332179 + 0.0129547559869050 \, i \\ g_{0021} &= 0.0099439410875781 - 0.0028471712578469 \, i \end{split} ``` These are the critical normal form coefficients that we are looking for. Under the additional hypothesis that the eigenvalues $\lambda_{1,2}$ cross the imaginary axis transversally as the control parameters a and c are varied (this can be verified numerically), we conclude from our discussion of the double Hopf normal form in §3.4.2 (and in particular the condition (3.51)) that a non-degenerate double Hopf bifurcation occurs at the critical parameter values (HH) with all other parameters set at their values in (4.22). Moreover, this bifurcation is of 'simple' type, since $$(\text{Re } g_{2100})(\text{Re } g_{0021}) = 0.000112962899422905 > 0$$ For an analysis of the bifurcation diagram of the corresponding truncated normal form, we refer to the discussion of the 'simple' case on p. 359 of [25]. (Note that since Re $g_{2100} > 0$ and Re $g_{0021} > 0$ it is necessary to reverse time!) In fact, since the quantities $$\theta(0) := \frac{\operatorname{Re} g_{1011}}{\operatorname{Re} g_{0021}} = 0.661417788589018, \qquad \delta(0) := \frac{\operatorname{Re} g_{1110}}{\operatorname{Re} g_{2100}} = 0.636676188879151$$ are such that $0 < \delta(0) \le \theta(0)$ and $\theta(0)\delta(0) < 1$, it follows from p. 360 of [25] that we are in subcase II of the 'simple' double Hopf bifurcation. Hence the bifurcation diagram displayed in subfigure II of Figure 8.25 in [25] applies, with time reversal. It predicts the presence of two-dimensional invariant tori, but these are repelling and cannot be visualized by direct integration of the DDE (4.20). We will return to this point in §4.3.8. Moreover, this bifurcation diagram predicts two curves of subcritical Hopf bifurcation emanating from the codimension-two point in the parameter plane. Such is consistent with Figure 4.4(a) in which we see that the double Hopf point lies at the intersection of two subcritical Hopf branches. Questions about the effect of higher-order terms and persistence of 'truncated' dynamics are addressed in §8.6.3 of [25]. Since the determinant of the matrix (??), $$\begin{vmatrix} \operatorname{Re} g_{2100} & \operatorname{Re} g_{1011} \\ \operatorname{Re} g_{1110} & \operatorname{Re} g_{0021} \end{vmatrix} = 0.0000653932106790078$$ is non-zero, Lemma 8.16 of [25] implies the presence of invariant two-dimensional tori near the bifurcation point. (However, by the remark made earlier, such tori are unstable.) These come into existence via Neimark-Sacker bifurcations of cycles that were in turn born in subcritical Hopf bifurcations. Curves of Neimark-Sacker and subcritical Hopf bifurcation emanate from the critical point in the parameter plane. In summary, the features of bifurcation diagram 8.25.II of [25] (with time reversed) persist under the addition of higher-order terms, but the motion on the unstable torus may no longer be quasi-periodic due to phase locking. It is interesting to note that there are no attractors other than the origin present in bifurcation diagram 8.25.II of [25] (with time reversed). The origin is an attractor for certain parameter values that correspond to points in the interior of the stability region in Figure 4.4(a). On the other hand, for 'unstable' parameter values we expect that small initial conditions will 'fly off' to a remote attractor that is not present in the local bifurcation diagram. This is illustrated in Figure 4.5. Figure 4.5: Time evolution of the variables x_1 and x_2 according to (4.20) starting from a constant history function $(x_1(\theta), x_2(\theta)) := (0.01, 0.0175)$ for $\theta \in [-h, 0]$ with $h := \max(\tau_1, \tau_2)$. Note that this history function may be considered 'small' in the usual supremum norm. Fixed parameter values are as in (4.22), while the control variables were set to a = 0.0905, c = 0.774, i.e. just above the critical values (4.35). After a long transient, during which the system spends time close to the stable manifolds of the saddles predicted by the bifurcation's normal form, the dynamics seem to 'fly off' and converge to a stable steady state far away from the origin. This behaviour is not due to numerical instability, as can be checked by *starting* the integration from the distant steady state. We refrain from computing the higher-order critical normal form coefficients, since their added value is small: We do not require them to guarantee non-degeneracy of the double Hopf bifurcation and, as we have just seen, dynamical features of the bifurcation are determined predominantly by the third order coefficients. #### 4.3.6 The fold-Hopf point In this subsection we show that for the critical parameter values $$a_c = \frac{k_1^c}{bg'(0)} = 0.00380017186861556, \qquad c_c = \frac{k_2^c}{dg'(0)} = 0.839666953114366$$ with (k_1^c, k_2^c) as in (ZH1) and all other parameter values as in (4.22), the equilibrium (0,0) of (4.20) exhibits a non-degenerate fold-Hopf bifurcation. As in §4.3.5 we will present the computations in the form of a commented Maple worksheet, thus enabling easy verification of our results. We assume that all commands in the initialization part of the worksheet as presented in §4.3.5 have been executed in the Maple shell and we continue the worksheet from there by providing point-specific data. First we enter the coordinates of the point, as well as the critical eigenvalues. ``` > k1 := 0.00760034373723105; k2 := 1.00760034373723; > a:=k1/(b*dg); c:=k2/(d*dg); > omega0:=0.148557497656540; > lambda0:=0; lambda1:=I*omega0; ``` Next, we compute the critical eigenvectors. Let $\Delta(\lambda_0)$ and $\Delta(\lambda_1)$ be the characteristic matrices corresponding to the eigenvalues $\lambda_0 = 0$ and $\lambda_1 = i\omega_0$. As can easily be verified by direct substitution, the vectors $$q_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad p_0 = \begin{bmatrix} 1 & 1 \end{bmatrix}, \qquad q_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \qquad p_1 = \begin{bmatrix} 1 & -1 \end{bmatrix}$$ are such that $$\Delta(\lambda_0)q_0 = 0,$$ $p_0\Delta(\lambda_0) = 0,$ $\Delta(\lambda_1)q_1 = 0,$ $p_1\Delta(\lambda_1) = 0$ Again, we need to scale q_0 , p_0 and q_1 , p_1 with constants α_0 , $\beta_0 \in \mathbb{R}$ and α_1 , $\beta_1 \in \mathbb{C}$ in such a way that the 'biorthogonality' relationship (3.71) is satisfied. For this we use once more (2.18) from Lemma 2.5 and Lemma 2.4. ``` > q0:=<1,1>; p0:=Transpose(<1,1>); > q1:=<1,-1>; p1:=Tranpose(<1,-1>); > alpha0:=1/sqrt(p0.DDelta(lambda0).q0); beta0:=alpha0; > alpha1:=1/sqrt(p1.DDelta(lambda1).q1); beta1:=alpha1; > q0:=alpha0*q0; p0:=beta0*p0 > q1:=alpha1*q1; p1:=beta1*p1; ``` Using Lemma 2.5 we define the corresponding critical eigenfunctions and their complex conjugates. ``` > phi0:=exp(lambda0*theta)*q0; > phi0bar:=map(conjugate,phi0); > phi1:=exp(lambda1*theta)*q1; > phi1bar:=map(conjugate,phi1); ``` The quadratic normal form coefficients are now easily computed from (3.74). ``` > gg:=Array(0..3,0..3,0..3); > gg[2,0,0]:=(1/2)*p0.D2F(phi0,phi0); > gg[1,1,0]:=p1.D2F(phi0,phi1); > gg[0,1,1]:=p0.D2F(phi1,phi1bar); This yields the following output. q_{200} = 0.00656040565870122470 g_{110} = 0.0132803410870657 + 0.000182334796002904i g_{011} = 0.0130415057497976 In order the calculate the cubic coefficients, we need to solve for the quadratic center man- ifold coefficients using (3.73). Since these expressions involve bordered inverses of the type addressed in Corollary 3.7, we first write a small procedure that implements (3.26) and (3.27). > BINV:=proc(lambda,zeta,kappa) > global q0,p0,q1,p1,lambda0,lambda1; > local q,p,xi,gam,A,B,X; > if lambda=lambda0 then q:=q0; p:=p0; > elif lambda=lambda1 then q:=q1: p:=p1; > else error "input is not an eigenvalue"; > > end if; > A:=Matrix([[Delta(lambda),q],[p,0]]); > B:=<zeta+kappa*DDelta(lambda).q,0>; > X:=LinearSolve(A,B); > xi:=<X[1,1],X[2,1]>; > gam:=-p.DDelta(lambda).xi+(1/2)*kappa*p.D2Delta(lambda).q; > return(exp(lambda*theta)*(xi+gam*q-kappa*theta*q)); > end: Now it is easy to evaluate the formulas in (3.73). > h:=Array(0..2,0..2,0..2); > h[2,0,0]:=BINV(lambda0,D2F(phi0,phi0),-p0.D2F(phi0,phi0)); > h[0,2,0]:=exp(2*lambda1)*MatrixInverse(Delta(2*lambda1)).D2F(phi1,phi1); > h[1,1,0]:=BINV(lambda1,D2F(phi0,phi1),-p1.D2F(phi0,phi1)); > h[0,1,1]:=BINV(lambda0,D2F(phi1,phi1bar),-p0.D2F(phi1,phi1bar)); As usual, we also require the complex conjugates. > hbar:=Array(0..2,0..2,0..2); > hbar[2,0,0]:=map(conjugate,h[2,0,0]); ``` > hbar[0,2,0]:=map(conjugate,h[0,2,0]); > hbar[1,1,0]:=map(conjugate,h[1,1,0]); > hbar[0,1,1]:=map(conjugate,h[0,1,1]); At last we are able to evaluate the formulas (3.75) for the cubic critical normal form coefficients. ``` > gg[3,0,0]:=(1/6)*p0.(3*D2F(phi0,h[2,0,0])+D3F(phi0,phi0,phi0)); > gg[1,1,1]:=p0.(D2F(phi0,h[0,1,1])+D2F(phi1bar,h[1,1,0]) > +D2F(phi1,hbar[1,1,0])+D3F(phi0,phi1,phi1bar)); > gg[2,1,0]:=(1/2)*p1.(D2F(phi1,h[2,0,0])+2*D2F(phi0,h[1,1,0]) > +D3F(phi0,phi0,phi1)); > gg[0,2,1]:=(1/2)*p1.(D2F(phi1bar,h[0,2,0])+2*D2F(phi1,h[0,1,1]) > +D3F(phi1,phi1,phi1bar)); This yields g_{300} = -0.000529267105230375018 g_{111} = -0.00320689049366882 ``` $$\begin{split} g_{300} &= -0.000529267105230375018 \\ g_{111} &= -0.00320689049366882 \\ g_{210} &= -0.00158236276273148 - 0.00000754921632836517 i \\ g_{021} &= 0.0501035490853393
- 0.0226017769063655 i \end{split}$$ All critical normal form coefficients have been computed. Using (??), (3.48) and (??) and the values for g_{jkl} found above, we can compute the critical coefficients in the Gavrilov normal form (??). These are: ``` b(0) = 0.00656040565870122470 c(0) = 0.0130415057497976 e(0) = 0.0242089386247185 \sigma(0) = 0.148557497656540 i d(0) = 0.0132803410870657 + 0.0121673553626291 i ``` Thus it follows by Theorem 8.6 of [25] that the fold-Hopf bifurcation is non-degenerate. (Of course, this statement is true provided we also verify that the critical eigenvalues cross the imaginary axis transversally at the bifurcation point.) We can extract more information from the critical coefficients by calculating the quantities $$s := \text{sign}[b(0)c(0)] = +1, \qquad \theta := \frac{\text{Re } g_{110}}{g_{200}} = 2.02431705872512 > 0$$ Indeed, since s = +1 and θ is positive, we may apply Theorem 8.7 of [25] to conclude that the fold-Hopf bifurcation is of the 'simple' type: It can locally be described by a quadratic normal form and no higher order terms of any sort need to be incorporated. (Hence the cubic coefficients were calculated in vain, but we have included their computation anyway, for the purpose of illustrating the implementation of the bordered inverse.) Only fold and Hopf curves emanate from the codimension-two point. No global bifurcation curves or invariant tori are present. For proofs of these statements we refer the reader to the detailed analysis performed in §§8.5.2 and 8.5.3 of [25]. #### 4.3.7 The Bautin (generalized Hopf) point The third and last codimension-two bifurcation point for which we calculate the critical normal form is the Bautin point, given by the values (GH1) in the (k_1, k_2) -plane. These correspond to the values $$a_c = \frac{k_1^c}{bg'(0)} = 0.251865121624750, \qquad c_c = \frac{k_2^c}{dg'(0)} = 0.581201968343537$$ of the control parameters, with all other parameters fixed at their values given in (4.22). The method is probably clear by now. Again, we assume that the worksheet presented in §4.3.3 has been executed in the active Maple session. We fix the critical parameter values and the critical eigenvalues. ``` > k1:=0.503730243249497; k2:=0.697442362012240; > a:=k1/(b*dg); c:=k2/(d*dg); > omega0:=0.275909434388554; lambda0:=I*omega0; ``` Next, we compute the critical eigenvectors. Let $\Delta(\lambda_0)$ be the characteristic matrix corresponding to the critical eigenvalue $\lambda_0 = i\omega_0$. It is easily verified that $$q = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad p = \begin{bmatrix} 1 & 1 \end{bmatrix}$$ are such that $$\Delta(\lambda_0)q = 0, \qquad p\Delta(\lambda_0) = 0$$ The following code uses (2.18) from Lemma 2.5 to scale the vectors q and p in such a way that the 'biorthogonality' relation (3.59) is satisfied. ``` > alpha:=1/sqrt(p.DDelta(lambda0).q); beta:=alpha; > q:=alpha*q; p:=beta*p; > p.DDelta(lambda0).q; ``` Next, we use Lemma 2.5 to define the corresponding eigenfunction. ``` > phi:=exp(lambda0*theta)*q; > phibar:=map(conjugate,phi); ``` Everything is ready to evaluate the formulas from $\S 3.5.3$. We start with (3.60) and (3.61). ``` > h:=Array(0..3,0..3); > h[2,0]:=exp(2*lambda0*theta)*MatrixInverse(Delta(2*lambda0)).D2F(phi,phi); > h[1,1]:=MatrixInverse(Delta(0)).D2F(phi,phibar); > h[3,0]:=exp(3*lambda0*theta)* > MatrixInverse(Delta(3*lambda0)).(3*D2F(phi,h[2,0])+D3F(phi,phi,phi)); ``` The reader can check that the real part of (3.63) vanishes, in accordance with the fact that we find ourselves at a point where the first Lyapunov coefficient is zero. ``` > c1:=(1/2)*p.(D2F(phibar,h[2,0])+2*D2F(phi,h[1,1])+D3F(phi,phi,phibar)); ``` For (3.64) we need to evaluate a bordered inverse. We could write a procedure for this (as in §4.3.6), but in fact a simple calculation shows that $\zeta + \kappa \Delta'(\lambda_0)q = 0$, in the notation of Corollary 3.7. It follows that ``` > h[2,1]:=exp(lambda0*theta)*kappa*((1/2)*p.D2Delta(lambda0).q-theta)*q; ``` We also make the complex conjugates of the center manifold coefficients available. ``` > hbar:=Array(0..3,0..3); > hbar[2,0]:=map(conjugate,h[2,0]); > hbar[3,0]:=map(conjugate,h[3,0]); > hbar[2,1]:=map(conjugate,h[2,1]); We continue with (??) and obtain > h[3,1]:=exp(2*lambda0*theta)* MatrixInverse(Delta(2*lambda0)).(D2F(phibar,h[3,0])+3*D2F(h[2,0],h[1,1]) +3*D2F(phi,h[2,1])+3*D3F(phi,phibar,h[2,0])+3*D3F(phi,phi,h[1,1]) +D4F(phi,phi,phi,phibar))-6*c1*MatrixInverse(Delta(2*lambda0)). (DDelta(2*lambda0)-IdentityMatrix(2)-theta*Delta(2*lambda0)).h[2,0]; and > h[2,2]:=MatrixInverse(Delta(0)).(2*D2F(phibar,h[2,1])+2*D2F(h[1,1],h[1,1]) +2*D2F(phi,hbar[2,1])+D2F(h[2,0],hbar[2,0])+D3F(phibar,phibar,h[2,0]) +D3F(phi,phi,hbar[2,0])+4*D3F(phi,phibar,h[1,1]) +D4F(phi,phi,phibar,phibar)); All cards are on the table to compute the second Lyapunov coefficient from (3.69) and (3.70). > c2:=(1/12)*p.(6*D2F(h[1,1],h[2,1])+3*D2F(hbar[2,1],h[2,0]) +D2F(hbar[2,0],h[3,0])+3*D2F(phi,h[2,2])+2*D2F(phibar,h[3,1]) +6*D3F(phibar,h[2,0],h[1,1])+6*D3F(phi,h[1,1],h[1,1]) +3*D3F(phi,h[2,0],hbar[2,0])+6*D3F(phi,phibar,h[2,1]) +3*D3F(phi,phi,hbar[2,1])+D3F(phibar,phibar,h[3,0]) +6*D4F(phi,phi,phibar,h[1,1])+3*D4F(phi,phibar,phibar,h[2,0]) +D4F(phi,phi,phi,hbar[2,0])+D5F(phi,phi,phi,phibar,phibar)); Taking the real part we find 12:=(1/omega0)*Re(c2); with output l_2(0) = 0.00110327860627586 ``` Let us in addition assume that the map $(a,c) \mapsto \ell_1(a,c)$ is regular at $(a,c) = (a_c,c_c)$, where $\ell_1(a,c)$ is the first Lyapunov coefficient. Then the zero equilibrium of (4.20) exhibits a non-degenerate Bautin bifurcation at the critical point (GH1). Since $l_2(0) > 0$ we find ourselves in the reverse of the situation discussed in §8.3.2 of [25]. In particular, by calculating $l_2(0)$ we have proved the existence of a curve of fold bifurcations of limit cycles emanating from the Bautin point in the (k_1, k_2) -plane. At this curve two cycles annihilate and we are left with an unstable equilibrium. (This is why the case $l_2(0) > 0$ is sometimes considered 'hard' or 'dangerous', in the spirit of the terminology used to describe a subcritical (non-degenerate) Hopf bifurcation.) #### 4.3.8 In pursuit of a stable invariant torus In conclusion of this example we return to the double Hopf point analyzed in §4.3.5. There we concluded that this point is of 'simple' type. Moreover, we saw that the values of the critical normal form coefficients predicted the existence of two-dimensional invariant tori near the bifurcation point. However, these tori were repelling and therefore they could not be expected to appear in simulations. In this section we re-run the computations performed in §4.3.5 but we set our 'fixed' parameters at the values $$b = 2.0, \quad d = 1.2, \quad \tau_1 = 12.99, \quad \tau_2 = 20.15$$ (4.36) instead of the values given in (4.22). We note that b and d remain unaltered while the delays τ_1 and τ_2 are changed slightly, since only these latter parameters affect the position of the codimension-one curves in the (k_1, k_2) -plane. The effect of this change is that the double Hopf point labeled **HH** in Figure 4.4(a) now occurs at the intersection of two *supercritical* Hopf branches. More specifically, its coordinates are $$(k_1^{c'}, k_2^{c'}) = (0.559667089973705, 0.688875991374739)$$ $(\omega_1', \omega_2') = (0.272554827172345, 0.174659443775867)$ (HH') In order to compute the critical normal form coefficients for these new fixed parameter values, we are required to change the scripts presented in §§4.3.3 and 4.3.5 at two places. Firstly, the Maple code block labeled (*) in §4.3.3 must be updated to use the values (4.36). Secondly, the Maple code block labeled (**) in §4.3.5 should be replaced by ``` > k1:=0.559667089973705; k2:=0.688875991374739; > a:=k1/(b*dg); c:=k2/(d*dg); > omega1:=0.272554827172345; omega2:=0.174659443775867; > lambda1:=I*omega1; lambda2:=I*omega2; ``` reflecting the new coordinates of the double Hopf point in the (k_1, k_2) -plane and the new values for the corresponding frequencies $\omega_{1,2}$ given by (HH'). The non-resonance condition (4.3.4) since for $(n_1, n_2) = (2, 3)$ we have $$n_1\omega 1 - n_2\omega 2 = 0.021131323017089$$ and this value of (n_1, n_2) minimizes the absolute value of the difference of the left- and right hand sides of (4.3.4) over all admissible pairs (n_1, n_2) . The remainder of the script in §4.3.5 remains unaltered. Upon execution we now find the following values for the critical normal form coefficients: ``` \begin{split} g_{2100} &= -0.00158423502629251 + 0.00128155174197111 \, i \\ g_{1011} &= -0.00076572821118787 - 0.00382491890256949 \, i \\ g_{1110} &= -0.00044023276677625 + 0.00371800958543468 \, i \\ g_{0021} &= -0.00176942031197673 - 0.00141734227810451 \, i \end{split} ``` Again, as in §4.3.5, the bifurcation is of 'simple' type, since ``` (\text{Re } g_{2100})(\text{Re } g_{0021}) = 0.00000280317763446696 > 0 ``` We also note that $$\begin{vmatrix} \operatorname{Re} g_{2100} & \operatorname{Re} g_{1011} \\ \operatorname{Re} g_{1110} & \operatorname{Re} g_{0021} \end{vmatrix} = 0.00000246607898545709$$ is non-zero. We compute the quantities $$\theta(0) := \frac{\operatorname{Re} g_{1011}}{\operatorname{Re} g_{0021}} = 0.432756539531544, \qquad \delta(0) := \frac{\operatorname{Re} g_{1110}}{\operatorname{Re} g_{2100}} = 0.277883495485201$$ and observe that $0 < \delta(0) \le \theta(0)$ and $\theta(0)\delta(0) < 1$. It follows from p. 360 of [25] that we find ourselves again in subcase II of the 'simple' double Hopf bifurcation. However, in contrast to the situation of §4.3.5 we presently have Re $g_{2100} < 0$ and Re $g_{0021} < 0$, so bifurcation diagram 8.25.II of [25] applies now without time reversal. In particular, we expect the existence of two Neimark-Sacker curves emanating from the codimension-two point in the (k_1, k_2) -plane. At these curves a stable two-dimensional
invariant torus is born and this torus should persist for parameter values sufficiently close to the Neimark-Sacker curves. The dynamics on the torus are generically not quasi-periodic but rather phase-locked due to the effect of higher-order terms. This is illustrated in Figure 4.6. Note that the increased accuracy used in the time integration is required because we restrict ourselves to a very small neighbourhood of the bifurcation point. Such a restriction is necessary due to the nearby presence of the Bautin point and the breakdown of the invariant torus only slightly away from the Neimark-Sacker curves. **Figure 4.6:** The result of an integration over 30.000 time units of the system (4.20) for $(k_1, k_2) = (0.5598, 0.6890)$ close to the critical values $(k_1^{c'}, k_2^{c'})$ given by (HH'). The other parameters are fixed at their values (4.36). As an initial condition we chose the constant history function $(x_1(t), x_2(t)) := (0.050, 0.075)$. To produce the time series 4.6(a) and 4.6(b) the MATLAB routine dde23 was used with an absolute tolerance of 10^{-8} and a relative tolerance of 10^{-6} . Only the last 1000 time steps were reproduced for clarity of presentation. In 4.6(c) we represent the dynamics during the last 2500 time steps in the 'physical' phase space consisting of the (x_1, x_2) -plane. The torus structure is clearly visible. Finally, 4.6(d) and 4.6(e) display the outcome of a fast Fourier analysis of the last 20.000 time steps. As expected, two frequency peaks reveal themselves very closely to the values $\frac{\omega_{1,2}}{2\pi}$ with $\omega_{1,2}$ as in (HH'). ### Chapter 5 ## Final remarks and future work In this text we have generalized (or rather: *lifted*) the techniques used in [24] and [29] for the calculation of critical normal form coefficients for finite dimensional ODEs and mappings to the infinite-dimensional setting of delay differential equations. We argued that these techniques fit naturally in the abstract functional-analytic framework used in [11] for the treatment of DDE using semigroup methods. For an overview of the contents and goals of this text, we refer to Chapter 1. In the remainder of this short chapter we like to point out some directions for future work. From the abstract viewpoint of dual perturbation theory (sun-star calculus) there is no principal difference between delay differential equations such as (1.1) and renewal equations such as (1.2). Differences are however predominant at a lower, more computational level. Therefore, we have chosen to restrict ourselves to a discussion of critical normalization for DDE. This immediately suggests one natural direction for future work: An extension of the normalization formulas to allow for mixed systems of DDE and renewal equations, thereby making them potentially useful for the local analysis of structured population models such as [10, 9], [4, 5]. We plan to take this task at hand in the near future. Another obvious direction of future activity is in the realm of software development. The continuation package DDE-BIFTOOL mentioned in the introductory Chapter 1 is currently incapable of bifurcation detection or normal form computations at critical points. The results from Chapter 3 of this text may readily be implemented to take care of the latter part of this task (i.e. the calculation of critical normal forms). In §4.3 Maple examples were provided to stimulate work in this direction. Clearly, the code presented these was not optimal. For instance, explicit matrix inversion was used liberally instead of e.g. LU decomposition to solve linear systems because the appearance of the resulting Maple code is closer to the appearance of the formulas derived in §3.5. For large problems such an approach is clearly not advisable. Elaborating on the previous point, I would like to add that I do believe strongly that numerical methods can only flourish when they are available in a usable form. The local analysis of real-world DDE is, apart from a small class of very simple systems, beyond the reach of pencil-and-paper methods. Since the characteristic equation is intrinsically transcendental (due to the infinite-dimensionality of DDE), there is little hope for symbolic formulas for the location of the critical points of a system. Ideally, I envision a software package for DDE capable of the same sort of analysis as CONTENT or MatCont. This brings me to my final point. Normal form theorems for local bifurcations always hold under the assumption of certain *genericity conditions*. These typically divide into so- called nondegeneracy conditions and transversality conditions. If both are fulfilled, then a parameter-dependent normal form provides detailed insight into the qualitative unfolding of the dynamics near a critical point, see e.g. Chapter 8 of [25]. Calculating critical normal form coefficients amounts to verifying nondegeneracy: If certain critical coefficients vanish, then a normal form description requires computations at (even) higher order. However, in this text we almost completely neglected the issue of transversality, which is intimately related to the existence of a smooth and smoothly invertible function K, $$(\beta_1, \beta_2) = K(\alpha_1, \alpha_2)$$ relating the original model parameters (α_1, α_2) to the unfolding parameters (β_1, β_2) that appear in the parameter-dependent normal form of the bifurcation under scrutiny. As demonstrated in §3.3 of [29] in the context of maps, the normalization method discussed in this text is easily adaptable to apply to parameter-dependent normalization, in which case *branch* switching capabilities for continuation software for DDE are within reach. It is merely necessary to replace the homological equation introduced in Chapter 3 by a parameter-dependent counterpart. Critical normalization tells us *what* to expect, parameter-dependent normalization shows *where* to expect it. Both are necessary for a fruitful bifurcation analysis of dynamical systems. There is interesting work ahead. # **Bibliography** - [1] M. M. Bosschaert, S. G. Janssens, and Yu. A. Kuznetsov. Switching to nonhyperbolic cycles from codim-2 bifurcations of equilibria in DDEs. *In preparation*, 2018. - [2] M.M. Bosschaert. Switching from codimension 2 bifurcations of equilibria in delay differential equations. Master's thesis, Utrecht University, the Netherlands, 2016. - [3] P. H. Coullet and E. A. Spiegel. Amplitude equations for systems with competing instabilities. SIAM J. Appl. Math., 43(4):776–821, 1983. - [4] A. M. de Roos, O. Diekmann, P. Getto, and M. A. Kirkilionis. Numerical equilibrium analysis for structured consumer resource models. *Bull. Math. Biol.*, 72(2):259–297, 2010. - [5] A. M. de Roos, O. Diekmann, P. Getto, and M. A. Kirkilionis. Erratum to: Numerical equilibrium analysis for structured consumer resource models [MR2594446]. *Bull. Math. Biol.*, 78(2):350–351, 2016. - [6] A. Dhooge, W.J.F. Govaerts, and Y.A. Kuznetsov. MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Software, 29(2):141–164, 2003. - [7] O Diekmann, P. Getto, and M. Gyllenberg. Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars. *SIAM Journal on Mathematical Analysis*, 39(4):1023–1069, 2007. - [8] O. Diekmann and M. Gyllenberg. Abstract delay equations inspired by population dynamics. In *Functional analysis and evolution equations*, pages 187–200. Birkhäuser, Basel, 2008. - [9] O. Diekmann, M. Gyllenberg, J. A. J. Metz, S. Nakaoka, and A. M. de Roos. Erratum to: *Daphnia* revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example [2652204]. *J. Math. Biol.*, 75(1):259–261, 2017. - [10] O. Diekmann, M. Gyllenberg, J.A.J. Metz, S. Nakaoka, and A.M. de Roos. *Daphnia* revisited: Local stability and bifurcation theory for physiologically structured population models explained by way of an example. *J. Math. Biol.*, 61(2):277–318, 2010. - [11] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel, and H.-O. Walther. *Delay Equations: Functional-, Complex-, and Nonlinear Analysis*. Applied Mathematical Sciences. Springer, 1995. BIBLIOGRAPHY 75 [12] K. Dijkstra, S.A. van Gils, S.G. Janssens, Yu.A. Kuznetsov, and S. Visser. Pitchfork-Hopf bifurcations in 1D neural field models with transmission delays. *Phys. D*, 297:88–101, 2015. - [13] K.-J. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations, volume 194 of Graduate Texts in Mathematics. Springer, New York, 2000. - [14] K. Engelborghs, T. Luzyanina, and D. Roose. Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. *ACM Trans. Math. Software*, 28(1):1–21, 2002. - [15] T. Erneux. Applied Delay Differential Equations, volume 3 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer-Verlag, New York, 2009. - [16] T. Faria. Normal forms and bifurcations for delay differential equations. In *Delay Differential Equations and Applications*, volume 205 of *NATO Sci. Ser. II Math. Phys. Chem.*, pages 227–282. Springer-Verlag, 2006. - [17] W.J.F. Govaerts. Numerical Methods for Bifurcations of Dynamical Equilibria. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2000. - [18] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical systems, and Bifurcations of Vector Fields, volume 42 of Applied Mathematical Sciences. Springer-Verlag, New York, 1990. Revised and corrected reprint of the 1983 original. - [19] J.K. Hale and S.M. Verduyn Lunel. *Introduction to Functional-Differential Equations*, volume 99 of *Applied Mathematical Sciences*. Springer-Verlag, New York, 1993. - [20] B.D. Hassard, N.D. Kazarinoff, and Y.H. Wan. Theory and Applications of Hopf Bifurcation, volume 41 of London Mathematical Society Lecture Note Series. Cambridge University Press, 1981. - [21] S. G. Janssens. On a normalization
technique for codimension two bifurcations of equilibria of delay differential equations. Master's thesis, Utrecht University, The Netherlands, 2010. - [22] W. Jiang and Y. Yuan. Bogdanov-Takens singularity in Van der Pol's oscillator with delayed feedback. *Physica D*, 227(2):149–161, 2007. - [23] B. Krauskopf, H.M. Osinga, and J. Galn-Vioque, editors. Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems. Springer-Verlag, 2007. - [24] Yu.A. Kuznetsov. Numerical normalization techniques for all codim 2 bifurcations of equilibria in ODE's. SIAM J. Numer. Anal., 36(4):1104–1124, 1999. - [25] Yu.A. Kuznetsov. Elements of Applied Bifurcation Theory, volume 112 of Applied Mathematical Sciences. Springer-Verlag, New York, third edition, 2004. - [26] Yu.A. Kuznetsov. Practical computation of normal forms on center manifolds at degenerate Bogdanov-Takens bifurcations. *Internat. J. Bifur. Chaos Appl. Sci. Engrg.*, 15(11):3535–3546, 2005. 76 BIBLIOGRAPHY [27] Yu.A. Kuznetsov and V.V. Levitin. Content: Integrated environment for the analysis of dynamical systems. Technical report, Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, 1997. Version 1.5. - [28] Maxima. Maxima, a Computer Algebra System. Version 5.41.0, 2017. Available from http://maxima.sourceforge.net/. - [29] H.G.E. Meijer. Codimension 2 Bifurcations of Iterated Maps. PhD thesis, Utrecht University, 2006. - [30] A. Meurer, C.P. Smith, M. Paprocki, O. Čertík, S.B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J.K. Moore, S. Singh, T. Rathnayake, S. Vig, B.E. Granger, R.P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M.J. Curry, A.R. Terrel, Š. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz. Sympy: Symbolic computing in python. *PeerJ Computer Science*, 3:e103, January 2017. - [31] J.A. Sanders. Normal form theory and spectral sequences. *Journal of Differential Equations*, 192(2):536–552, 2003. - [32] M. Schechter. Principles of Functional Analysis, volume 36 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2002. - [33] J. Sieber, K. Engelborghs, T. Luzyanina, G. Samaey, and D. Roose. DDE-BIFTOOL Manual Bifurcation analysis of delay differential equations. *ArXiv e-prints*, June 2014. - [34] R. Szalai. PDDE-CONT: A continuation and bifurcation software for delay-differential equations. Technical report, University of Bristol, Department of Engineering Mathematics, 2005. - [35] R. Szalai. Knut: A continuation and bifurcation software for delay-differential equations. Technical report, University of Bristol, Department of Engineering Mathematics, 2009. - [36] A.E. Taylor and D.C. Lay. *Introduction to Functional Analysis*. John Wiley & Sons, New York, second edition, 1980. - [37] S.A. van Gils, S.G. Janssens, Yu.A. Kuznetsov, and S. Visser. On local bifurcations in neural field models with transmission delays. *J. Math. Biol.*, 66(4-5):837–887, 2013. - [38] S. Visser, H.G.E. Meijer, M.J.A.M. van Putten, and S.A. van Gils. Analysis of stability and bifurcations of fixed points and periodic solutions of a lumped model of neocortex with two delays. *Journal of Mathematical Neuroscience*, 2(8):1–40, 2011. - [39] B. Wage. Normal form computations for Delay Differential Equations in DDE-BIFTOOL. Master's thesis, Utrecht University, the Netherlands, 2014. - [40] J. Wei and W. Jiang. Stability and bifurcation analysis in Van der Pol's oscillator with delayed feedback. *Journal of Sound and Vibration*, 283(3-5):801–819, 2005.