Abstract delay equations in the light of suns and stars

Sebastiaan G. Janssens

Mathematical Institute, Utrecht University

Online Delay Days Hasselt - Utrecht - Berlin (- Earth) 1 October 2020

Outline

Introduction and motivation

Admissibility

Maximality, robustness, and splitting

Consequences and conclusions

Outline

Introduction and motivation

Admissibility

Maximality, robustness, and splitting

Consequences and conclusions

Two classes of abstract delay equations

Given a Banach space *Y* and an initial history $\varphi : [-h, 0] \to Y$, extend φ to $x : [-h, t_e) \to Y$ for some $0 < t_e \le \infty$.

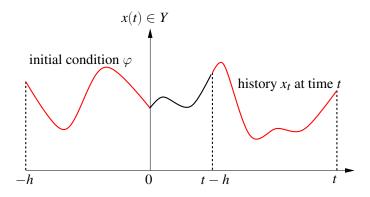
Two of many ways:

RE Prescribe x(t) as function of x_t for t > 0.

DDE Prescribe derivative $\dot{x}(t)$ as function of x_t for $t \ge 0$.

Shift the extension on [t - h, t] back to [-h, 0].

Obtain a dynamical system on a state space X of histories.



Adjoint semigroups for delay equations

TYPE	STATE SPACE X	DE	DE ₀
RE	$L^p([-h,0],Y)$	$x(t)=F(x_t)$	x(t) = 0
DDE	C([-h,0],Y)	$\dot{x}(t) = Bx(t) + F(x_t)$	$\dot{x}(t) = Bx(t)$

$F: X \to Y$ is a continuous operator,

B generates a C_0 -semigroup *S* on *Y*.

Solutions of $(DE_0 + IC)$ define a C_0 shift semigroup T_0 on X.

Adjoint semigroup theory for T_0 on X gives a canonical embedding

$$j: X \to X^{\odot \star}, \qquad \langle x^{\odot}, jx \rangle \coloneqq \langle x, x^{\odot} \rangle.$$

Perturbation of the w^{*}-generator $A_0^{\odot *}$ of $T_0^{\odot *}$ with an operator $G: X \to X^{\odot *}$ gives a semilinear differential equation in $X^{\odot *}$,

$$d^{\star}(j \circ u)(t) = A_0^{\odot \star} ju(t) + G(u(t)),$$

suggesting an abstract integral equation in X,

$$u(t) = T_0(t)\varphi + j^{-1} \int_0^t T_0^{\odot \star}(t-\tau) G(u(\tau)) \, d\tau.$$
 (IE)

For RE and DDE, in general T_0 is not sun-reflexive.

Still, there is a bounded embedding $\ell: Y \to X^{\odot \star}$ such that¹

1. for all continuous $w : \mathbb{R}_+ \to Y$ and all $t \ge 0$,

$$\int_0^t T_0^{\odot\star}(t-\tau)\ell w(\tau)\,d\tau\in jX,$$

and

2. for a given initial history $\varphi \in X$, solutions of (IE) with perturbation

$$G = \ell \circ F : X \to Y \to X^{\odot \star}$$

are in bijection with solutions of (DE + IC).

¹[Diekmann and Gyllenberg, 2008] for RE and [Janssens, 2019] for DDE.

Introduction and motivation

Admissibility

Maximality, robustness, and splitting

Consequences and conclusions

Definitions

Let T_0 be a C_0 -semigroup on a Banach space X over $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$. Do not assume that T_0 is sun-reflexive.

Let J be a non-degenerate interval, and

$$\Omega_J \coloneqq \{(t,s) \in J \times J : t \ge s\}.$$

Given a continuous function $f: J \to X^{\odot *}$, study the range in $X^{\odot *}$ of the convolution map

$$\Omega_J \ni (t,s) \mapsto \int_s^t T_0^{\odot \star}(t-\tau) f(\tau) \, d\tau \in X^{\odot \star}$$

1. A continuous function $f: J \to X^{\odot \star}$ is admissible for T_0 if

$$\int_{s}^{t} T_{0}^{\odot \star}(t-\tau) f(\tau) \, d\tau \in jX \qquad \text{for all } (t,s) \in \Omega_{J}.$$

- A closed subspace X₀ of X^{⊙★} is an admissible range for T₀ if *every* continuous function f : J → X₀ is admissible for T₀.
 This is *independent* of the interval J.
- A continuous G : X → X[⊙]* is an admissible perturbation for T₀ if G takes its values in some T₀-admissible range.

An admissibility test

Lemma

Let \mathfrak{X}_0 be a closed subspace of $X^{\odot \star}$. If there exists an interval J such that every constant function on J into \mathfrak{X}_0 is T_0 -admissible, then \mathfrak{X}_0 is a T_0 -admissible range.

Proof.

- **0**. We can assume that *J* is compact.
- 1. Linear functions on *J* into X_0 are T_0 -admissible.
- 2. The same is true for affine functions, and for continuous piecewise affine functions.
- **3**. The latter function class is dense in $C(J, X_0)$.
- 4. Uniform convergence preserves admissibility.

Three questions about admissibility

maximality

Does there exist a maximal admissible range for T_0 ?

robustness

Let \mathfrak{X}_0 be an admissible range for T_0 .

Let *T* be obtained by perturbing T_0 with $L \in \mathcal{L}(X, \mathfrak{X}_0)$.

Is \mathfrak{X}_0 an admissible range for *T* as well?

splitting

Let $f : [0, t_e) \to \mathfrak{X}_0$ be continuous, for some $0 < t_e \le \infty$. Is perturbing *T* by *f* equivalent to perturbing T_0 by L + f.

Introduction and motivation

Admissibility

Maximality, robustness, and splitting

Consequences and conclusions

Maximality. The subspace $X_0^{\odot \times}$

For $\lambda \in \mathbb{K}$ with Re λ sufficiently large, the resolvent

$$R(\lambda, A_0^{\odot \star}) \coloneqq (\lambda I - A_0^{\odot \star})^{-1}$$

exists in $\mathcal{L}(X^{\odot \star})$. Define²

$$X_0^{\odot \times} \coloneqq \{ x^{\odot \star} \in X^{\odot \star} : R(\lambda, A_0^{\odot \star}) x^{\odot \star} \in jX \}.$$

This does not depend on λ .

 $X_0^{\odot \times}$ is closed and $T_0^{\odot \star}$ -invariant, and coincides with $X^{\odot \star}$ if and only if T_0 is sun-reflexive.

 $X_0^{\odot \times}$ is instrumental in the next two theorems about admissibility³.

²[Van Neerven, 1992]

³[Janssens, 2020]

Theorem

 $X_0^{\odot \times}$ is an admissible range for T_0 that is maximal for inclusion

Proof of admissibility.

- 0. Show that constant functions into $X_0^{\odot \times}$ are admissible for T_0 and apply testing lemma. For arbitrary $x^{\odot \times} \in X_0^{\odot \times}$,
- 1. Observe that $y_{\lambda}^{\odot \star} \coloneqq R(\lambda, A_0^{\odot \star}) x^{\odot \times}$ is in $\mathcal{D}(A_0^{\odot \star})$ and in *jX*.
- **2**. Evaluate, for any $s \leq t$,

$$\int_{s}^{t} T_{0}^{\odot \star}(t-\tau) x^{\odot \star} d\tau = \int_{s}^{t} T_{0}^{\odot \star}(t-\tau) (\lambda I - A_{0}^{\odot \star}) y_{\lambda}^{\odot \star} d\tau$$
$$= \lambda \int_{s}^{t} T_{0}^{\odot \star}(t-\tau) y_{\lambda}^{\odot \star} d\tau - (T_{0}^{\odot \star}(t-s) - I) y_{\lambda}^{\odot \star},$$

and note that the RHS sits in jX.

Proof of maximality.

- **0**. Let \mathfrak{X}_0 be an admissible range for T_0 . For arbitrary $x^{\odot \star} \in \mathfrak{X}_0$,
- 1. Verify the adjoint Laplace transform representation

$$R(\lambda, A_0^{\odot \star}) x^{\odot \star} = \lim_{t \to \infty} \int_0^t T_0^{\odot \star}(\tau) e^{-\lambda \tau} x^{\odot \star} d\tau, \qquad (\#)$$

with convergence in the norm of $X^{\odot \star}$.

2. Evaluate, for any $t \ge 0$,

$$\int_0^t T_0^{\odot \star}(\tau) e^{-\lambda \tau} x^{\odot \star} \, d\tau = e^{-\lambda t} \int_0^t T_0^{\odot \star}(t-\tau) e^{\lambda \tau} x^{\odot \star} \, d\tau,$$

and note that the RHS sits in jX.

3. Apply (#) and use norm-closedness of jX.

Corollary

A continuous perturbation $G: X \to X^{\odot *}$ is admissible for T_0 if and only if G takes its values in $X_0^{\odot \times}$.

Robustness and splitting

Theorem

Robustness

Let T be obtained by perturbing T_0 with $L \in \mathcal{L}(X, X_0^{\odot \times})$. Then $X_0^{\odot \times}$ is an admissible range for T as well.

Splitting

Let $f: J \to X_0^{\odot \times}$ be continuous on a compact time interval J. The unique solution $u: J \to X$ of

$$u(t) = T_0(t)\varphi + j^{-1} \int_0^t T_0^{\odot \star}(t-\tau) [Lu(\tau) + f(\tau)] d\tau \qquad (\dagger)$$

is given by

$$u(t) = T(t)\varphi + j^{-1} \int_0^t T^{\odot \star}(t-\tau) f(\tau) d\tau.$$

Proof.

- **0.** Suppose that $\varphi \in j^{-1}\mathcal{D}(A_0^{\odot \star})$ and $f: J \to X_0^{\odot \times}$ Lipschitz.
- 1. There exist Lipschitz $u_m: J \to X$ and $f_m: J \to X_0^{\odot \times}$ such that

$$u_m(t) = T_0(t)\varphi + j^{-1} \int_0^t T_0^{\odot \star}(t-\tau) [Lu_m(\tau) + f_m(\tau)] d\tau,$$

for all $t \in J$, and $f_m \to f$ and $u_m \to u_{\varphi,f}$ uniformly on J, where $u_{\varphi,f} : J \to X$ is the unique solution of (†).

2. Use the regularity of φ , u_m , and f_m to w^{*}-differentiate and split,

$$d^{\star}(j \circ u_m)(t) = A_0^{\odot \star} j u_m(t) + L u_m(t) + f_m(t)$$
$$= A^{\odot \star} j u_m(t) + f_m(t)$$

for $t \in J$, with $u_m(0) = \varphi$.

3. w^{*}-integrate from arbitrary *s* to *t* in *J*,

$$ju_m(t) - jT(t-s)u_m(s) = \int_s^t T^{\odot \star}(t-\tau)f_m(\tau) d\tau,$$

hence f_m is admissible for T.

4. Let $m \to \infty$ uniformly on *J* to conclude *f* is *T*-admissible, and

$$u_{\varphi,f}(t) = T(t)\varphi + j^{-1} \int_0^t T^{\odot \star}(t-\tau)f(\tau) \, d\tau.$$

5. The general case for $\varphi \in X$ and $f \in C(J, X_0^{\odot \times})$ follows from the continuity of

$$X \times C(J, X_0^{\odot imes}) \ni (\varphi, f) \mapsto u_{\varphi, f} \in C(J, X)$$

and density of $j^{-1}\mathcal{D}(A_0^{\odot\star}) \times \operatorname{Lip}(J, X_0^{\odot\times})$.

Corollary (of maximality and robustness) The maximal admissible ranges for T and T_0 coincide: $X^{\odot \times} = X_0^{\odot \times}$.

Introduction and motivation

Admissibility

Maximality, robustness, and splitting

Consequences and conclusions

Implications for nonlinear local analysis

Do not insist on sun-reflexivity of *X* for T_0 . Instead, systematically require all perturbations to take values in $X^{\odot \times}$.

Let $G: X \to X^{\odot \times}$ be C^k for $k \ge 1$ and G(0) = 0. Variation-of-constants

$$u(t) = T(t-s)u(s) + j^{-1} \int_s^t T^{\odot \star}(t-\tau)R(u(\tau)) d\tau, \qquad s \le t,$$

is well-defined, with $L \coloneqq DG(0)$ and $R \coloneqq G - L$ into $X^{\odot \times}$.

This has led to relatively easy generalizations of sun-reflexive results, such as local center manifold theorems⁴.

⁴Compare [Diekmann et. al., 1995] with [Janssens, 2020, Theorems 39 and 41]

Existing and new motivation

These theorems underlie bifurcation analysis in abstract DDE models⁵,

$$\dot{x}(t) = Bx(t) + F(x_t), \qquad t \ge 0.$$

with *S* generated by *B* immediately norm-continuous on *Y*.

So the cases B = 0 and $B \neq 0$ are treated on an equal footing.

Recent motivation comes from

DDE second-order Cauchy problems on *Y* with delayed feedback control (with S.M. Verduyn Lunel), and

RE + DDE models of structured populations (with O. Diekmann).

⁵[V. Gils, Janssens, Kuznetsov, Visser, 2013], [Spek, V. Gils, Kuznetsov, 2019]

O. Diekmann and M. Gyllenberg Abstract delay equations inspired by population dynamics In Functional Analysis and Evolution Equations Birkhäuser, 2008

📡 J.M.A.M. van Neerven

The Adjoint of a Semigroup of Linear Operators Lecture Notes in Mathematics 1529 Springer-Verlag, 1992

S.G. Janssens

A class of abstract delay differential equations in the light of suns and stars. Part I arXiv:1901.11526, January 2019

S.G. Janssens

A class of abstract delay differential equations in the light of suns and stars. Part II arXiv:2003.13341, March 2020

No. Diekmann, S.A. van Gils, S.M. Verduyn Lunel, and H.-O. Walther

Delay Equations

Functional-, Complex-, and Nonlinear Analysis Applied Mathematical Sciences 110 Springer-Verlag, 1995

S.A. van Gils, S.G. Janssens, Yu.A. Kuznetsov, and S. Visser On local bifurcations in neural field models with transmission delays J. Math. Biol., 66(4-5):837-887, 2013, 1209.2849

L. Spek, S.A. van Gils, and Yu.A. Kuznetsov Neural field models with transmission delays and diffusion arXiv:1912.09762, December 2019